
READ
H2020 Project 674943

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 674943

D4.3
READ Platform and Service

Maintenance

Philip Kahle, Sebastian Colutto, Günter Hackl, Günter Mühlberger
UIBK

Distribution: http://read.transkribus.eu/

Project ref no. H2020 674943

Project acronym READ

Project full title Recognition and Enrichment of Archival Documents

Instrument H2020-EINFRA-2015-1

Thematic priority EINFRA-9-2015 - e-Infrastructures for virtual re-
search environments (VRE)

Start date/duration 01 January 2016 / 42 Months

Distribution Public

Contract. date of deliv-
ery

30.06.2019

Actual date of delivery 10.07.2019

Date of last update 10.07.2019

Deliverable number D4.3

Deliverable title READ Platform and Service Maintenance

Type Demonstrator

Status & version FINAL

Contributing WP(s) WP4

Responsible beneficiary UIBK

Other contributors All partners

Internal reviewers Gundram Leifert, Hervé Dejean

Author(s) Philip Kahle, Sebastian Colutto, Günter Hackl, Gün-
ter Mühlberger

EC project officer Christopher Doin

Keywords Transkribus

Contents

1 Executive Summary 4

2 Service Maintenance 4
2.1 Software Development in Year Three . 5

2.1.1 Structure Editor . 5
2.1.2 File and Image Server . 6

3 Architecture 7

4 Hardware 9

5 Conclusion 9

D4.3 READ Platform and Service Maintenance 3/ 9

1 Executive Summary

This deliverable outlines the progress of task 4.1, READ platform and service mainte-
nance, which involves activities such as updating background systems, bug and error
handling, system migration (to larger servers according to the expanding network), user
support, and similar activities.
In the first year of the project, activities were focussed on improving the overall user
experience by fixing existing bugs in the system and extending functionality. On the
other hand, the architecture of the platform was overhauled with a focus on scalability
which eases the addition of hardware resources in the future. Furthermore, a migration
of parts of the system to the University of Innsbruck computing center aimed at provid-
ing improved availability of the platform.
In the second year the main goal in this task was to improve existing functionality; only
urgently needed features have been added. Also the overall architecture designed in the
first year has proven to be robust and was just slightly adapted where shortcomings were
revealed. Due to this, the platform could be scaled hardware-wise as planned.
In the last one and a half years of the project the system was augmented with two
additional server machines, containing 8 GPUs each, and the server-side software was
adapted to manage those resources appropriately. Most other actions taken in this task
aimed at maintaining availability and throughput of the platform despite the increasing
number of users.
This deliverable is divided into three parts: the first deals with service maintenance, the
second part describes the changes in software and architecture of the platform, and the
last part provides some details on currently used hardware resources.

2 Service Maintenance

The starting point of the READ platform was the existing Transkribus system, developed
in the TranScriptorium project. Transkribus allows a user to ingest sets of document im-
ages into the system, where they are stored persistently, transcribe and enhance them in
a standardized way and, finally, export them in different formats, such as METS/ALTO,
PDF, Word or Excel. Several integrated tools ease the transcription process with auto-
mated steps, e.g. finding regions and/or lines in the images or recognizing the text.

Date Nr. of users ∆
1 Jan. 2016 2.828 -
1 Jan. 2017 5.098 +2.270
1 Jan. 2018 8.810 +3.712
1 Jan. 2019 18.441 +9.631
30 Jun. 2019 25.080 +6.639

Table 1: The number of registered Transkribus users throughout the READ project.

The time period from the beginning of 2018 until the end of the project brought a

D4.3 READ Platform and Service Maintenance 4/ 9

large growth in the number of registered Transkribus users when compared to the first
two years of the project (see table 1). Starting Y3 with 8.810 users, the number has
reached 25.080 on the last day of the project.
While actions have been taken in the years before to scale the platform on additional
hardware (see section 3), new challenges arose at peak times with hundreds of users
which mostly could be mitigated.
The scheduled downtime in 2018 accounted to 10 hours and 1,5 hours in 20191 until
the end of the project. While this also includes the standard maintenance of underlying
services such as storage and database systems, in October of 2018 the amount of data
threatened to exceed the capacity available and required a migration to another system.
The high load on parts of the systems at the mentioned peak times nevertheless led to
a fair amount of unscheduled downtime. While it is hard to measure an exact number,
we estimate that at a total of 50 hours in 2018/2019 servicing of users could not be pro-
vided due to software bugs or failures in the service infrastructure, yielding an overall
availability of about 99,53%2 during the last one and a half years of the project.
However, the incidents have shown weaknesses in the software, software development
methods (see section 2.1) and infrastructure which were or are object to improvements:
a more modern monitoring system based on Checkmk3 was set up in 2019 and will re-
place the legacy solution, based on Icinga4, once all existing service checks have been
migrated. This system will allow for a more in-depth analysis of load peaks and bot-
tlenecks, where the legacy system’s configuration proved to be too time-consuming and
not flexible enough.
Also, in the beginning of 2018 some service components, such as the file server of Tran-
skribus, still relied on the initial setup and hardware from the Transcriptorium project
and could not tackle the increasing load. Those have been moved to more powerful
server machines and a redundant setup is planned in order to mitigate failure.
The increased number of users of the software is also reflected in the effort put into sup-
port. 1.789 mails from users have been processed by the UIBK team that were received
on the general support and bug report mail accounts.

2.1 Software Development in Year Three

2.1.1 Structure Editor

In the past few years we have received more and more requests by users for the enrich-
ment of documents on a structural level. Thus we developed a structure editor for the
Transkribus expert client (TranskribusX) in 2018. The purpose of this editor is to add
structural tags, e.g. "paragraph", "heading" or "marginalia", to layout elements (i.e. a
region, line or word) on document pages.
The editor can be accessed via the "Metadata" tab and its sub-tab "Structural".
The set of available tags for every installation of TranskribusX can be configured via the

1Scheduled downtime 2016: 7 hours, 2017: 3,5 hours
2Availability 2016: 99,73%, 2017: 99,73%, see D4.2 and D4.1
3https://checkmk.com/
4https://icinga.com

D4.3 READ Platform and Service Maintenance 5/ 9

user interface. It is possible to select from a set of predefined tags or create new custom
types.
Each different structure type has a (configurable) color associated with it that defines
the color with which this element is drawn in the image canvas when the editor is se-
lected.
The basic usage of the structure editor is easy and straighforward: the user selects one
or more structure elements from the image canvas, then clicks on the "plus" button at
right side of each listed structure type to assign it to those elements. Alternatively, the
user can also right-click on the selected elements in the canvas and assign the structure
type via the submenu "Assign structure type".
During the export of a document, structural tags are written into the "custom" attribute
of the corresponding layout element. A tag called "structure" with an attribute "type"
used for that purpose, e.g.: custom="structure type:paragraph".
Note also, that document pages that have been enriched by structure types on region
level can consequently be used as ground-truth to train a model for an automatic struc-
ture analysis tool as described in D4.6.

2.1.2 File and Image Server

As discussed in section 2, weaknesses in the initial design emerged with the growing
number of clients connecting to the backend and the increasing amount of image data
ingested into the system. One of the identified shortcomings concerned the delivery of
files to client applications and especially the throughput when storing new files. Both
tasks are handled by a separate file and image server application (fimagestore), which
exposes a HTTP API for uploading files that are written to a network attached storage
system. For image files, different formats used for presentation are created asynchronu-
ously and stored, e.g. a thumbnail and a lightweight JPEG representation. The original
file and any precomputed derivates are then available to be retrieved via the HTTP API.
Moreover, on-demand image operations, e.g. scaling or cropping, can be requested.
Several person months were spent in 2018 on an analysis, partial reimplementation and
update of the file and image server application in order to improve the multithread-
ing capabilities and fix issues that caused problems regarding performance or stability.
Moreover, the original design, using a embedded database, was restricted to a single
deployment while the refactored version relies on UIBK’s Oracle database management
system. This allows for a redundant deployment of multiple application instances for
load balancing and increased failure tolerance, laying the foundation for further scaling.
A separate instance can be set up to handle the preprocessing of the presentation image
types exclusively and relief those deployments that serve the files to clients.
Tests were conducted running both versions of the server application, fimagestore 1.0
and fimagestore 1.5, as well as the client on a Intel Core i7 3770 desktop machine. Files
for both instances are stored on the NFS storage that is also used in production and have
been picked from the Bentham dataset (JPEG, 5,3 MB per file). Each test simulates 10
clients accessing the server application concurrently and every client executes the same
set of commands, i.e.:

• Upload: upload 8 JPEG files, access the metadata file via HTTP and delete the

D4.3 READ Platform and Service Maintenance 6/ 9

files afterwards. Average time taken from 5 test runs.

• Display: Retrieve the precomputed reduced-quality JPEG file for 100 previously
uploaded images.

• On-demand conversion: Request an on-demand conversion (scale to 120x120 pixels
size, PNG output) for 20 files.

Table 2 outlines the time in seconds (average from 5 test runs) measured until all the
clients completed their command queue. The numbers show that a single file server
instance now can serve an increased number of clients with images in a timely manner
while uploads to the file server from the Transkribus Server and worker machines benefit
from the improved multithreading.

Test fimagestore 1.0 fimagestore 1.5
Upload 62,37 10,38
Display 19,45 6,76
On-demand conversion 40,56 11,55

Table 2: Time in seconds until all 10 clients complete their command queue

While the Transkribus desktop application accesses images and XML files exclusively
via the file server’s proprietary HTTP API, the IIIF image API5 provides many benefits
for web-based user interfaces as developers can choose from a variety of ready to use
image viewers that load images dynamically and thereby save bandwidth on the client
and improve the user experience crucially. Therefore, the file server setup of Transkribus
is augmented with an installation of the Cantaloupe image server6 that provides this type
of API for serving the images stored in the system to respective applications.

3 Architecture

In year one, the server application of Transkribus was split into two parts: one web
application (TranskribusServer) that serves the data to clients via its REST API and a
worker application (TranskribusAppServer) responsible to handle heavy workload tasks
such as layout analysis or text recognition. Moreover, the Quartz scheduler framework
was used to implement queues for specific tasks and executing the jobs from those queues.
As the number of different job tasks grew this year, it became clear that a more flexible
system is needed to cater for the specific needs in the Transkribus platform. Thus, a
custom-made solution was put into place which also allowed to further modularize the
platform: with the current system it is possible to implement applications to handle
specific job types or even just one of those, e.g. keyword spotting requests are dealt
with in an application including that specific module. Once the workload in a module
reaches a critical level, it is possible to deploy and start more instances of the module; the

5https://iiif.io/api/image/2.1/
6https://cantaloupe-project.github.io/

D4.3 READ Platform and Service Maintenance 7/ 9

system automatically distributes the workload among them. While the scalability was
already vastly improved in year one, the modular approach allows to scale the system
according to the current needs and available hardware. An overview of the platform
architecture is shown in figure 1. In year three, the integration of URO’s next iteration
HTR technology (see D7.9) required to provide access to any graphics processing units
(GPU) and their compute capabilities. In this turn, the modular system described above
gained further configuration options: a number of available GPUs can be assigned to a
module, which then manages those resources, i.e. allocates them fully or partially for
an applicable job depending on the configuration.

Figure 1: Current Transkribus architecture

D4.3 READ Platform and Service Maintenance 8/ 9

4 Hardware

While in the beginning of the project all platform components ran on virtual machines
(VM) provided by the Institute for Databases and Information Systems most of them
have been migrated to VMs at UIBK’s IT department during the first year. An HP
Bladecenter including 16 servers with 12 cores each was acquired in the end of the first
year and dedicated to running heavy processing tasks in the platform. To the date
of this writing, 13 of those machines have been added to the Transkribus platform,
running mostly instances of TranskribusAppServer but also other server applications
such as Apache Solr and the fimagestore file server. Three machines remain detached
for offline batch processing.
In 2018 two additional server machines, each with 8 Nvidia 1080ti GPUs, have been
added to the platform. While one of those machines is currently still used for testing
and offline processes, the second one runs the URO HTR+ training processes.

5 Conclusion

While the effort put into this task could be reduced to some degree during the second
year, the increase of active users and also in the platform’s code complexity required
more resources than expected in the third year and until the end of the project. More
effort had to be put in testing new code, adding tests for and refactoring of legacy code
as well as the analysis and monitoring of the system.
Although, this slowed down the development process including the integration of services
and tools (see D4.6), the system now can cope with larger numbers of users and strategies
for further scaling are in place or at least planned in detail.

D4.3 READ Platform and Service Maintenance 9/ 9

