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1 Executive Summary

Writer Identification and Retrieval is the task of identifying the scribe of a document
after creating a ranking of documents in a dataset according to the similarity of the
handwriting to a reference document. These methods can be used to determine the
author of documents or to search for documents in the archive where the author is not
known.

The current deliverable contains information about the newly developed methods and
the current progress for a new method. The focus now lies on the user perspective; the
user should be able to understand a decision made by the algorithm.

2 Learning Similarities

A new method for Writer Identification and Retrieval has been developed based on the
last milestone of this work package and is published at the ICFHR 2018 [4]. It follows
the scheme, which is currently used to the best of our knowledge by all state-of-the-art
deep learning methods. This scheme can be seen in Figure 1.
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Figure 1: Writer Identification and Retrieval scheme.

First patches of the handwriting are extracted using the location of SIFT features.
It has already been shown, like in [2] and [3] that the neighborhood of these location
contain enough information for an successful identification of the writer. The patches
extracted are than fed into a Neural Network to train a specific target. We use, like
in [2], surrogate classes as target but, as a second approach, the different writers from
the trainings dataset. In contrast to learning a classification task, this paper proposes
to learn a similarity measurement between image patches using a triplet loss function.
This means that three patches are presented to the network, two from the same writer
or surrogate class and one patch from another class. The goal of the network is now
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Table 1: Comparison of the method proposed to two other state-of-the-art methods.

hard
MAP | Top1 Top 2 Top3
Christlein et al.[1] 88.0 | 994 81.0 618
Fiel and Sablatnig[3] | 67.4 | 94.5  48.0  25.7
Keglevic et. al[4] 86.1 | 989 779 56.4

to learn an embedding in which the distance between the two samples is minimized,
whereas at the same time the distances two the other patch should be maximal.

For applying the neural network to the task of writer identification or retrieval, one
single feature vector has to be generated for each patch. Thus, a aggregation or encoding
of patch features has to be made. So the last layer of the network, which is responsible
for the assignment of the class, is cut of and the activation of the second last layer is
used as feature vector for a patch. A VLAD encoding is used to generate the feature
vector of one page, which is then used for the identification of the writer. Table 1 shows
the results compared with other methods. It can be seen that current method performs
slightly worse than others, which can be explained that dataset contains Greek and
English documents. Since the alphabet of these two languages differ, it shows that the
proposed method is currently not invariant to the change of the alphabet.

3 Improving the Comprehensibility

The next focus lies on the comprehensibility of the results which are presented to the
user. As already mentioned above, currently the writer identification and writer retrieval
methods generate one feature vector for each page. The distance of feature vectors of
two pages is then calculated to determine whether it is the same writer or not. Is is
also possible to sort the examined pages according to the distances, which is the result
of writer retrieval. So pages which look very different to the human eye have a very
small distance, whereas pages of the same writer can have a large one (without the try
of counterfeiting). Thus a new method is in development which should overcome these
problem and makes it possible to present a visualization of the decision process to the
user. When comparing two pages, patches are extracted from page A. These patches
contain characters or combination of characters. Page B is then searched for patches
with similar characteristics. Figure 2 shows 2 patches from 4 writers with the characters
“ve” or “ne” on it. A network, similar to the one which is presented above, is then
trained to tell whether the same writer or not has produced a patch pair.

Such patch pairs are found all over the two pages and for each of these pairs a decision
is made. Figure 3 shows how these pairs are generated. On the left page an image patch
is selected, which is the character “a” in this case and on the right page similar patches
are found. In is not important, that all “a”s are found in the right page, as long as there
are enough pairs of the page. The number of patch pairs found may also indicate if the
documents have been written by the same writer, but currently this is not taken into
account.
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Figure 2: 8 patches of 4 different writers which have been classified as similar. The
network for the decision if it is the same writer is trained with triplets of these

patches.
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Figure 3: Left: Query image with all possible patches (gray) and one selected patch
(red). Right: All patches which are similar to the red patch on the left side

At the end a voting over all these pairs is made to determine if the same person has
written the two pages. Since this method is computational expensive it is planed to
use older methods, like [1], [3], [2], to make a ranking of the similarity and then only
examine the first couple pages of the ranking. If a user now wants to analyze why one
page is assigned to a writer the voting can be visualized. The user is than able to see
which patches in both pages look similar and which have been identified as belonging
to the same writer. This method is currently in development and we can not presented

any results here.
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