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Executive Summary

The third year’s deliverable describes that the performance of a handwritten text recog-
nition (HTR) model is not only affected by its structure but also by many other factors.
This includes, among others, the quality, variety and amount of input images and the use
of hardware-optimized software. Those changes led to a faster and better HTR model
measured in terms of character error rate (CER) compared to the architecture presented
in deliverable D7.8 of year two.

1 Introduction

Last year we introduced Google’s Deep Learning library TensorFlow [1] which enabled
us to build deep neural networks (NNs) fast and easily. The proposed architecture
resulted in a performance gain of more than 50 % compared to the sequential processing
recurrent neural network (SPRNN) architecture of year one. Further adaptations to
the NN, a simplified preprocessing pipeline, diversified data augmentation and modified
training strategies have brought additional improvements and are described in section
2. The HTR models reach new peak accuracies in terms of CER, while simultaneously
running faster due to optimized GPU utilization. We extended the performance gain
up to 80 % compared to year one (CER) and the training of an NN is up to 10 times
faster than before. Experiments were evaluated on three different datasets: Staatsarchiv
des Kantons Ziirich (StAZH) collection, Bozen and IAM (see section 3). The new HTR
has been integrated in Transkribus and can be used now. URO, UIBK and StAZH have
also organized the ICFHR2018 Competition on Automated Text Recognition on a READ
Dataset, tackling the task of writer adaptation described in section 4. The underlying
task is formulated as followed.

Task 7.3 — Neural Network based HTR

The following is copied from the Grant Agreement:

This task comprises all investigations concerning Neural Network (NN) based HTR
technology. It focuses on the NN training based upon a sufficiently large number of line
images along with their textual transcripts, and how the NN output can be effectively
decoded into word graphs for further processing in the overall workflow. This covers both
training and decoding rely on well-known machine learning techniques that were exten-
sively used and extended by the UPVLC and URO. Further flexibility, improvement and
particular issues require ongoing research: maintaining stability of the training process
for avoiding degenerated NNs; speeding up the training process for advanced flexibility;
adapting to specific data for effective extendibility; researching on word-based graphs
and character-based graph generated from NN-based decoders for interactive transcrip-
tion and KWS; incorporating advanced language models into the decoding procedures
for improved overall performance in transcription and search tasks. Furthermore the NN
based HTR engine available at URO will be customized for use in the project workflow.
From a research or an implementation point of view, we will then investigate the inter-
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actions of the algorithms or the engine, respectively, across the interfaces to adjacent
workflow modules.

2 HTR improvements

In year three we improved upon the new HTR baseline that was established in deliver-
able D7.8 both in terms of performance and speed. Advancements include an optimized
network architecture, better GPU utilization, a simplified preprocessing pipeline, diversi-
fied data augmentation and modified training strategies. Additionally, first experiments
with recurrence-free models were carried out to investigate fundamental alternatives to
the current implementations.

2.1 HTR+ architecture

HTR+ is an adaptation of year two’s HTR architecture. We are still using a deep model
mainly consisting of nested convolutional layers, bidirectional long short-term memo-
rys (LSTMs) and interweaved pooling layers, but with slight modifications. First of all
the basic layer structure got rearranged into stacked bidirectional LSTM layers ontop
of stacked convolutional layers, instead of a more loosely alternation. The convolutional
stack as the first part of the NN focuses on 2D-feature extraction. Implicit and explicit
downsampling in the form of convolutional strides in the first layer or pooling after the
second and third layer reduce the spatial dimensions of the input image, thus lowering
the computational cost and combatting overfitting. Addtionally the convolutional blocks
from year two got simplified by excluding any utility layers like batch normalization or
local response normalization and their filters were finetuned according to demands. The
bidirectional LSTM stack as the second part of the NN introduces dynamic temporal
behaviour by means of recurrent connections and allows for segmentation free and con-
text sensitive processing. Overall we ended up with a simpified but deeper architecture
than before. We also integrated GPU-optimized LSTM cells, which were the main bot-
tleneck when profiling training and inference runs of our models, to take advantage of
Transkribus’ new hardware in the form of multiple GPU servers. The output layer of the
model still provides the known confidence matrix (ConfMat) and decoding can be ap-
plied as before (see [9]). A graphical representation of the HTR+ architecture is depicted
in figure 1.

2.2 Preprocessing and data augmentation

The input of an HTR model is a set of text line images extracted by the baseline detection
algorithm. Quality and quantity of images play an important role for the following
training algorithm. On the one hand, if inputting the raw grey textline images that we
get from the digitized document we would end up getting low accuracy values. Therefore
the preprocessing of images is an important step in the HTR pipeline. We simplified the
previous preprocessing and are now four times faster than before. The main components
are the size normalization to a height of 64 pixels, a contrast normalization without any
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O -——————= Output ConfMat
————— Convyss |, #classes feature maps

BLSTM | ----- 256 LSTM cell units

————— 256 LSTM cell units

————— 256 LSTM cell units

————— MaxPool; 3
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————— Convy’3,8 feature maps
é ——————— Input image

Figure 1: The proposed HTR+ model: A stacked Conv-BLSTM architecture with inter-
weaved pooling layers and a ConfMat output. The sub- and superscript in
Conv/ MaxPoolZZi}iz desribes the size of the kernel and the strides along both
dimensions respectively. Furthermore, #classes is the number of character
channels present in the ConfMat.

binarization of the image, a skew correction and a slant normalizer using the centre-of-
gravity-line of a text line.

On the other hand, deep learning networks typically require large amounts of data
to learn and generalize. However, for many datasets, especially historical documents,
not a lot of ground truth (GT) data is available. One way to artificially increase this
amount is data augmentation, where minor alterations are made to the existing training
data. To simulate naturally occuring variations in handwritten text line images, we
combine different methods, namely affine transformations, dilation and erosion, aswell
as elastic and grid-like distortions. These methods are applied to the original line image
randomly with an independent probability of 50%. Examples of affine transformations
include translation, scaling, rotation, shear mapping and compositions of them in any
combination and sequence. Dilation and erosion are two fundamental operations in
morphological image processing, which basically function like image filters to enlarge or
decrease relevant parts of an image, based on structuring elements. Elastic distortions
deform the image by generating random displacement fields, convolving those with a
Gaussian, and applying the displacements to the pixel values of the image [8]. For
Gaussians with intermediate standard deviation, the displacement fields look like elastic
deformations. Grid-like distortions try to capture slight differences in scale and slant
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from character to character, instead of applying uniform deformations to the entire text
line. They work by placing control points on a regular grid such that they align to
the baseline, randomly perturbing those points and warping the image according to the
perturbed grid [11]. Figure 2 shows some examples for seperately applied augmentation
techniques to the original line image. We found a random combination of dilation,
erosion and grid-like distortions to achieve the best overall results.

M% Bl “‘V ,2’*’*6‘%"
S s o
JZ S o8 P
s
A ﬁw nade) @ ﬁw{ ,éi’,.

Figure 2: Line image and seperately applied augmentation techniques. From top to
bottom: original, dilation, erosion, elastic, grid-like.

2.3 Moaodified training strategies

The HTR+ network is entirely differentiable and can be trained end-to-end in a super-
vised manner via the backpropagation algorithm. Using TensorFlows integrated concept
of optimizers, we were able to experiment with a wide variety of optimization algorithms,
like stochastic gradient descent, ADAM or RMSPROP, to name a few. One of the most
important hyperparameters that ensures a robust and stable training is the learning
rate, controlling how much the network parameters are adjusted. It’s independent of
the chosen optimizer and amongst other things, it’s responsible for a smooth conver-
gence of the training and can improve the final model performance. If the learning rate
is too small, the training will take too long, since the network adapts very slowly. If
the learning rate is too big, the network may fail to converge or even diverge. In year
three we experimented with different learning rate schemes, to improve upon the con-
stant learning rate baseline in year two. A simple exponential decay of the learning rate
over the course of the training helps the network to adapt quickly in the early stages of
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training and to finetune its parameters in the later stages of training. Another experi-
mental approach was to lock the learning rate to a constant value in the beginning and
to apply a cosine-like decay at the end. Overall the network converges faster with the
exponential decay, but reaches better final performance with the latter approach, which
is why we chose that setup in combination with the ADAM optimization algorithm as
the new baseline for HTR+ training.

We also experimented with the concept of reinitialization strategies. The core idea is, to
fully retrain an already pretrained model after reinitializing one or more specific layers
of the network. The standard case comprises a full training run, after which a layer
gets randomly reinitialized, the learning rate gets reset and a second full training run is
executed. Theoretically there are no constrains on how many layers can be reinitialized
in this manner or how often one can repeat the training process, but even with just one
reinitialization loop, we observed a gain of about 10 % CER performance when applied
on the output or last bidirectional LSTM layers. Doing multiple loops can be expensive,
because you have to fully retrain the model each time, but exploiting the new GPU
capabilities it seems feasible when one wants to really optimize a particular model.

2.4 Temporal Convolutional Networks

In addition to (character) accuracy, the time it takes to train and use a model is also
important when judging the performance of a system. So we searched for a faster, and
maybe better, alternative to the LSTM cells that are used in the current architecture.
The temporal convolutional networks (TCNs) do just that by substituting recurrent
neural network (RNN) layers through convolutional neural network (CNN) layers. The
recurrent connections in an RNN] i.e.; the property to look back in time, are imitated
by dilated and stacked 1-D convolutions that are applied to an input sequence. The
dilated convolutions make it possible to look back in history in a nonlinear fashion, so
longer sequences can be handled. Furthermore, the stacked 1-D convolutions are used
to extract information from the past and to output a sequence that has the same length
as the input sequence. We followed the description in [2] and adapted the architecture
so that we are able not only to look back in time, but also take future elements in
the sequence into account. In other words, to mimic the bidirectional behaviour of
bidirectional RNNs. First experiments showed that the TCNs are slower and not as
good as the TensorFlow GPU-optimized bidirectional LSTM counterparts. Because of
that there was no need to integrate this architecture into Transkribus.

3 Experiments

Experiments on various datasets demonstrate minor performance gains in terms of CER
compared to year two’s architecture. We also achieved a major speedup of the models,
primarily for the training and convergence times, but also for inference when the trained
models get deployed. We briefly present the data sets for the evaluation in the following
and report on the corresponding results afterwards.
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3.1 Data sets

Staatsarchiv des Kantons Ziirich collection

We refer to deliverable D7.8 (section 4) for the StAZH! collection, as it is presented in
detail there.

Bozen

The Bozen dataset consists of a subset of documents from the Ratsprotokolle collection
composed of minutes of the council meetings held from 1470 to 1805. This dataset is
written in Early Modern German and the number of writers is unknown [10]. The data
is divided into three different subsets with the following statistics:

e Train: 8366 lines.
e Validation: 1040 lines.
e Test: 1138 lines.
Some example images from the given subsets are depicted in Figure 3.

<

(b) sample from val

(%*‘@-—sw?} 1.4

(c) sample from test

—-—

Figure 3: Sample lines from the three Bozen subsets.

IAM Handwriting Database

The TAM Handwriting Database contains forms of unconstrained handwritten text for
off-line handwriting recognition. The database was first published in [5] at the IC-
DAR1999 and was expanded in October 2002 as described in [6]. The database is based
on the Lancaster-Oslo/Bergen (LOB) corpus [3], which is a collection of texts that were

!The Staatsarchiv Ziirich is a large scale demonstrator of the READ project.
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used to generate forms, which subsequently were filled out by persons with their hand-
writing.

The subsets and ground-truth processing are taken from [7]. The so called Aachen’s
partition of the dataset contains three different subsets with the following statistics:

e Train: 6161 lines from 747 forms.
e Validation: 966 lines from 115 forms.
e Test: 2915 lines from 336 forms.

This is not the official partition of the dataset, but it is widely used for HTR experiments
(in other applications, like KWS, other partitions are used). Some example images from
the given subsets are depicted in Figure 4. The ground-truth is processed in several ways
to fix some of its irregularities. Firstly, some characters that were originally separated by
white spaces are put together again to form words (e.g. "B B C" — "BBC"). Secondly, the
original data was unconsistently tokenized by separating contractions from the words.
The contractions are attached to the word again (e.g. "We 've' — "We've").

a JL/ /owb&{ /Vw)c ’j%ﬂj o @ mew tvve

(a) sample from train

at //o/n«; @S . z\/oq RNE Brz /}/ /—a/\/;wgg,; . A/z Wr//

(b) sample from val

mawn Nay 6o Seow FReavie from Vau Y hall crotcon on

(c) sample from test

Figure 4: Sample lines from the three IAM subsets.

3.2 Results

We present comparative experimental results for the evolution of our HTR architecture
since the beginning of the READ project, using the listed datasets. The architectures
include the SPRNN [4] used in year one, the new baseline HTR implemented in Tensor-
Flow used in year two and the development of said architecture over the course of year
three. We observe a performance boost of about 5 — 10 % in terms of CER compared
to the state of HTR+ in the beginning of 2018 and an overall performance gain of up to
80 % compared to year one’s results (see Table 1).

By finetuning the overall network architecture, optimizing our models for better GPU
utilization and simplifying the preprocessing pipeline, we were able to reach significant
speed improvements in comparison to our previous models. As Table 2 shows, a full
training run from scratch, using a single GTX 1080Ti GPU, only takes 1/10th of the time
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Table 1: Comparison of different HTR architectures with regard to the CER on various
datasets, evaluated on the corresponding test set.

CER [%]

SPRNN HTR+(2017) HTR+(2018) HTR+(e2018)
StAZH 14.48 4.45 3.21 2.97
IAM — 8.06 5.97 5.46
Bozen - 6.70 5.10 4.89

that was previously necessary. We also observed faster convergence times for network
trainings, i.e., it takes less training epochs for new models to reach satisfactory error
rates. In inference time when the trained models get employed by users and no GPU
hardware is available, we still managed to speed up single core CPU performance by a
factor of two.

Table 2: Comparison of different HTR architectures with regard to the training time on
various datasets, using a single GTX 1080Ti GPU. The models are trained for
150 epochs with 8192 line images each.

Train time [h]

SPRNN HTR+(2017) HTR+(2018) HTR+(e2018)
StAZH ~72 54 73 7
IAM ~72 63 79 7
Bozen ~72 25 33 4

4 Writer adaptation — ICFHR18 competition

Normally an HTR model is trained on homogeneous data to achieve the best performance
for similar writing styles or documents. In practical applications however, the amount
of GT for one particular document to be transcribed is limited or, in the worst case,
not available. On the other hand, many text corpora have already been transcribed
and published and can be used to pretrain an HTR model. The question that now
arises is how much additional training material of a specific document is necessary to
adapt a pretrained HTR system in order to produce reasonably low error rates on the
respective document. The ICFHR18 Competition on Automated Text Recognition on a
READ Dataset also dealt with this question. The competition was organized by URO,
UIBK and StAZH and hosted by the ScriptNet platform. For more information we
refer to the competition website? and just present the submission results along with the
HTR+(e2018) results in Table 3 where the quality of a submitted model is measured in
terms of CER.

The competition has shown the importance of selection and amount of training data for
an HTR system. If no GT is available, a pretrained model is a good starting point for

2https://scriptnet.iit.demokritos.gr/competitions/10/
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Table 3: Detailed results of the submissions. It describes the average CER for a certain
number of additional training pages that where used to train on the HTR model.

CER per additional specific training pages (in %)

0 1 4 16 total error
OSU 31.3987 17.7344 13.2672 9.0238 17.8560
ParisTech 32.2516  19.7981 16.9794 14.7213 20.9376
LITIS 35.2940 22.5078  16.8871 11.3448 21.5084
PRHLT 32.7927  22.1470  17.8952 13.3288 21.5409
RPPDI 30.8045 28.4038  27.2462 22.8461 27.3252
HTR+(e2018) 28.9226  16.3390 11.7684 7.1055 16.0339

transcribing and a following retraining with new GT data. The more training material
for one scenario is accessible, the better the model performs. One can also see that
the HTR+ is outperforming all other competitors that submitted their results and thus
yielding state-of-the-art results.

5 Additional Tools - ConfMat Exporter

There are many tasks working on raw output data like text, e.g., named entity recog-
nition or topic modeling. When applying these models to handwritten text, i.e., to the
(text) output of the HTR model, it can be useful to use the confidence values stored in
the ConfMat. To use the ConfMats externally we want to store them in a suitable format.
This is achieved by saving them in CSV-files following the RFC-4180 specification using
the UTF-8 encoding scheme. To get a clear assignment between ConfMats and text lines
the filenames are given by “line_id.csv”. To handle the decimal separator as a dot the en-
US format is used. Futhermore the confidences are given in exponential notation with a
significand-length of 6. In Figure 5 an example is given. The tool is not yet integrated in
Transkribus but open source at https://github.com/CITlabRostock/CITlabConfMat.
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(a) Line of handwritten text: “3. Jan.”

used as input to the HTR model

and the corresponding output of the NN. Black means high confidence,
white means very unlikely. Rows correspond to positions in the image,
columns correspond to classes (i.e. characters).

", ", ", &, L (L), ./,0,1,2,3,4,5,6,7,8,9,:,;,=,7,A,B,C,

9.96193E-1,1. M382E 5,1.36204E-8, 1 ?9394E 5,1.49948E- 5 1. 25145E 5,1. 3108?E 6 1
9.95433E-1,8.00895E- 6 4.081826E-9,1.33529E- 5 1.06212E- 5 8.87107E- 6 7.53473E- ?

9.95433E-1,5.76895E- 6‘1 984@1E—?,S.GMSQSE—S,5.?91E—6,6.01618E—6,3.4181?E—?,5.
9.97714E-1,5.05948E-6,5.64702E-6,4.98286E-6,3.66952E-6,5.03637E-6,1.22499E-7,
9.97714E-1,5.49403E-6,9.19495E-6,4.50892E-6,3.87378€E-6,8.56513E-6,6. 64348E-7,
6.35595E-1,5.28436E-6,6.9229E-7 ,4.87695E-6,3.86492E-6,1.51674E-5,1.00305E-4,1
2.61514E-2,2.65938E-7,1.1551E-8,2.54039E-7,1.83267E-7,1.41285E-6,1.34552E-4,8
3.89752E-1,4.44742E-6,5.86659E-8,7.59824E-6,4.81102E-6,2.05959E-5,1.22313E-4,
4.04289E-3,3.22068E-8,1.53303E-6,7.28042E-8,3.13821E-8,7.73273E-8,1.43348E-7 ,«
7.30273E-2,2.25533E-7,9.19501E-1,2.80883E-7,1.55897E-7,2.92773E-7,4. 18088E-8,
1.225E-2,3. 96346E—8,9.8?86?E—1‘3.78392E—8,2.51?23E—8,3.68916E—B,1.50866E—9,4.
2.55012E-1,1.21568E-6,5.9523E-1,9.99992E-7, 8, 4483E-7,1.28924E-6, 1.632E-7,2.29
3.45488E-5,1.56732E-10,1.46443E-6,1.33835E-10,1.07762E-10,3.43384E-10,2. 16595
7.76828E-1,4.03671E-6,1.26489E-4,2.24846E-6,2.12503E-6,1.14895E-5,1.28433E-6,
9.54526E-1,3.02076E-6,2.66142E-6,1.16573E-6,1.16218E-6,7.35301E-6,1. 60606E-6,

(b) A snippet of the corresponding CSV-file, where the first row represents
the channels. The other rows depict the confidences of the channels for
a given timestep in the image.

Figure 5: Example of a ConfMat and the corresponding export CSV-format.
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