

Recognition and Enrichment of Archival
Documents

D6.15.
Document Understanding Tools P3

Hervé Déjean, Jean-Luc Meunier, Stéphane Clinchant
NAVER LABS Europe

Distribution:

http://read.transkribus.eu/

READ
H2020 Project 674943

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 674943

D6.14 DU tools 31th December, 2017 2/17

Project ref no. H2020 674943

Project acronym READ

Project full title Recognition and Enrichment of Archival Documents

Instrument H2020-EINFRA-2015-1

Thematic Priority EINFRA-9-2015 - e-Infrastructures for virtual research environments (VRE)

Start date / duration 01 January 2016 / 42 Months

Distribution Public

Contractual date of delivery 31/12/2018

Actual date of delivery

Date of last update 14/12/2018

Deliverable number 6.15

Deliverable title Document Understanding Tools P3

Type Demonstrator

Status & version 1.0

Contributing WP(s) WP5, WP6, WP7, WP8

Responsible beneficiary NLE

Other contributors

Internal reviewers ASV, UIBK

Author(s) Hervé Déjean, Jean-Luc Meunier, Stéphane Clinchant

EC project officer Martin Majek

Keywords Document Understanding, Table Understanding, Information Extraction

D6.14 DU tools 31th December, 2017 3/17

Contents
Executive Summary ... 4

1. TranskribusPyClient ... 4

1.1. Overview .. 4

1.2. Year 3 improvements ... 4

2. TranskribusDU ... 5

2.1. Overview .. 5

2.2. Bench-Marking Information Extraction in Semi-Structured Historical Handwritten

Records ... 5

2.3. Table Understanding .. 7

2.4. Information Extraction Component ... 12

3. Resources: .. 15

3.1. Software Repositories .. 15

3.2. Related documentation under WIKI: ... 15

3.3. Data under Transkribus .. 15

4. References .. 15

11. Code .. 16

Annex 1: Transkribus Python API ... 16

D6.14 DU tools 31th December, 2017 4/17

Executive Summary

This document presents the work done during the third year for the Document Understanding

(DU) work package. TrankribusPyClient, the Python RESTful client has been updated to

Python 3 and updates have been done to reflect changes in the RESTful API. TranskribusDU,

the Document Understanding package per se, has been intensively tested against several use

cases, especially Table Understanding. Several methods for row and column segmentation

were designed and evaluated. Two main use-cases have been addressed for Table

Understanding: the ABP use case, focusing on Information Extraction from tables, and the NAF

use case (census record).

We also updated Information Extraction evaluations done last year with respect to HTR+ results

(ABP use-case). We also implemented an Information Extraction state-of-the-art method for

running test, obtaining the best results for this dataset.

The toolkit is built upon open-source software and available on the Transkribus GitHub

repository. The READ wiki pages are constantly updated with last developments. See

references Section 4.

1. TranskribusPyClient

1.1. Overview

TranskribusPyClient is a Python module allowing you to interact with the Transkribus platform

through its RESTful interface [1]. Beyond the wrapping of the services offered by the

Transkribus RESTful API, a strong need appeared for some functionalities which would be too

tedious through the Transkribus User Interface such as: having an efficient transcripts version

management, or automate as much as possible some Machine Learning operations (such as full

training configuration with parameter tuning.). With these new commands, full workflow can

now be designed for most use cases (combined with TranskribusDU components).

Since the 2018 Transkribus User Conference, a couple of teams (University of Geneva) are

using TranskribusPyClient to process documents.

1.2. Year 3 improvements

The major update of this tool is its migration to Python 3. Our modifications (multi-type

classification) of the open source Python library Pystruct have also been integrated in the

official distribution mentioning READ funding.

D6.14 DU tools 31th December, 2017 5/17

Here is the list of new or updated functionalities offered by PyClient. Please see the READ

Wiki for the full list (or see Annex 1).

do_table_template
A new command has been added, which correspond to the call of the Table Template tool

developed by CVL and integrated into the server by UIBK. See this READ Wiki page.

do_htrRnnPerRegion
This command calls of a specific model on a list of regions in a page. This allows to use

dedicated HTR models for a given region. See this READ Wiki page.

2. TranskribusDU

2.1. Overview

TranskribusDU is a Python library allowing you to perform some Document Understanding

tasks. It allows you to build your own workflow in Python by easily combining layout analysis

tools, TranskribusDU tools and your Python tools. For image processing and Layout Analysis,

we rely on the tools available through the Transkribus RESTful API.

Besides the three main technologies for Document Understanding we used (Conditional

Random Fields (CRF), Edge Convolution Networks (GCN) and Sequential Pattern Mining

(SPM)), we tested this year state-of-the-art techniques for Named-Entity Recognition (NER)

for handwritten text (see section 2.2).

Extensive evaluations with several approaches for row and column segmentation were designed

and evaluated with the different READ datasets for Table Understanding (Section 2.3)

Finally, the impact of the new HTR+ has also been assessed for the Information Extraction

tasks.

2.2. Bench-Marking Information Extraction in Semi-Structured Historical
Handwritten Records

Lately, the interest of the document image analysis community in document understanding,

information extraction and semantic categorization is waking in order to make digital search

and access ubiquitous for archival documents. An example of such information extraction is

NER in demographic documents. Information may contain people’s names, birthplaces,

https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Transkribus_downloader
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Transkribus_downloader

D6.14 DU tools 31th December, 2017 6/17

occupations, etc,… in some structured (like tables) or semi-structured (like records or entries)

format. Tables are already covered by the work done in the previous years. We wanted to assess,

this year, Information Extraction from textual records. For this we used the IEHHR dataset

made available at ICDAR 2017. We hoped that by testing with various configurations of state-

of-the-art tagging techniques we would be able to identify strong baselines for NER on noisy

text generated from some off-the shelf HTR. Dataset. The competition used 125 pages of the

Esposalles database [1], a marriage license book conserved at the archives of the Cathedral of

Barcelona. The corpus is written in old Catalan by only one writer in the 17th century. Each

marriage record contains information about the husband’s occupation, place of origin, husbands

and wife’s former marital status, parent’s occupation, place of residence, geographical origin,

etc. The structure of the marriage record tends to follow a regular expression (with some

exceptions):

<husband> fille de <husband’s father> y <husband’s mother> ab <wife> fille de <wife’s

father> y <wife’s mother>

<husband> fille de <husband’s father> y <husband’s mother> ab <wife> viusa <wife’s

former husband>

The objective is to extract information from the records in simplified predefined semantic

classes. The marriage records are manually annotated at token, lines and the level of the record

with semantic annotations for each token.

The training and test sets are composed of:

• Training set: 100 pages, 968 marriage records.

• Test set: 25 pages, 253 marriage records.

For each marriage record we use:

• Images of segmented text lines.

• Text files with the corresponding transcription.

• Text files with the corresponding categories: name, surname, occupation, location, and

state.

• Text files with the corresponding person: husband, husbands father, husbands mother,

wife, wife’s father, wife’s mother and other-person.

 For evaluation on blind test data, the CSV file with the transcription of the relevant words

(named entities) and their semantic category is generated for each record. This represents an

evaluation metric to simulate the filling in of a knowledge base. An example of labelled record

(training sample) and its named entity (expected output) is shown in Fig. 1:

D6.14 DU tools 31th December, 2017 7/17

With a basic bi-lstm architecture (state-of-the-art for sequence tagging problem), and using the

HTR output performed by our partner URO, we were able to reach excellent results for this task

(the best as of November 2018). This unfortunately shows that this dataset is not the right one

in order to illustrate the need of jointly learn the HTR model and the NER model, since a

sequential approach performs extremely well).

The full details of our experiments is available in this paper.

2.3. Table Understanding

In 2018, we tested the use of synthetic data for the Table Understanding task, for specifically

for the Table Row segmentation (sub-section 1). We also tested other modelling for this task

(sub-section 2). An approach using graphical separators was designed as baseline approach for

row and column segmentation (subsection 3).

1. Synthetic Data

Since our approach uses Machine Learning algorithms, Annotated data is key. Generating such

data for Table Understanding is feasible through the Transkribus GUI, but may be consider as

time-consuming. An alternative is to be able to create synthetic data. The Table Understanding

task is a very good candidate for assessing this research direction: In our case, the input of our

workflow is not image but a page where textlines have been recognised. Generating such

representation is easier than generating an image.

We experimented this idea with the ABP collection. Table 1 shows a comparison between

synthetic data and manually annotated data (for our two algorithms: CRF and ECN). The model

trained with synthetic data, while underperforming for the BIESO task per see, reaches

equivalent results than the model trained with real data for the final task (Row zone evaluation).

This opens interesting possibilities for new use-cases where synthetic data could be quickly

generated for a specify collection.

https://arxiv.org/pdf/1807.06270.pdf

D6.14 DU tools 31th December, 2017 8/17

Table 1: Evaluation with manually annotated data and synthetic data: in some configuration, both perform

similarly.

Methods
BIESO ROW ZONE (50%)

F-1 P R F-1

Manual GT (144 pages)

CRF (1500 iterations) 91.4 91.9 91.4 91.6

ECN 90.1 92.4 94.5 93.5

synthetic (600 pages)

CRF (1500 iterations) 88.1 92.6 94.8 93.7

ECN 85.6 90.5 92.1 91.3

Some real tests have been successfully conducted with datasets provided by users, and without

ground-truth (Noord-hollands Archief).

2. Various Modelling for Row Segmentation

Our approach (described in the last deliverable) relies on the categorisation of the textlines in

order to group them into cells, then rows. The way we formulated the row detection problem

was as follows: Once the columns and the text lines have been identified, each text line will be

tagged with one of the following categories: B, I, E, S, O, which correspond of the following

situation:

Table 2: Explanation of the BIESO labels used for table row segmentation.

Category Explanation

B(eginning) First line of a cell

I(nside) Line inside a cell (except first and last)

E(nd) Last line of a cell

S(ingleton) Single line of the cell

O(utside) Outside a table

This BIESO pattern is borrowed from the Natural Language Processing domain, where it is

used to recognize entities (sequence of words) in a sentence. Our assumption is that, once

properly categorized, it will be easy to finally segment into rows. Figure 1 shows some output

of the categorization. Evaluation shows that both CRF and GCN perform very well on our

dataset.

Table 3: Accuracy of CRF and GCN for the BIEOS row detection task.

Method Fold 1 Fold 2 Fold 3 Fold4 Average

CRF 0.938 0.908 0.91 0.865 0.906

GCN 0.945 0.92 0.90 0.89 0.915

D6.14 DU tools 31th December, 2017 9/17

Figure 1. Example of Row detection using the BIEOS model. Orange: Begin of a cell, green: Inside a cell; grey: end of

cell.

A full description of this experiment can be found in [5]. We then carried out experiments with

other tagsets, mainly BIO and BISO. In fact, the simpler version (BIO) works the best as shown

Table 1Table 4 . The full results can be seen in this WIKI page.

Table 4 Evaluation of the different tagsets (training/test sets used in [5]).

Tagset Precision Recall F-1

BIESO 93.6 93.5 93.5

BISO 94.4 94.3 94.3

BIO 95.1 95.0 95.0

Table 5 shows the evaluation on the ABP180 (180 tables) and NAF488 collection (488 tables).

¾ of each dataset was used for training, 1/3 for testing. Both collections are very different. NAF

is more challenging: more skewed pages, sparser columns (numerical values).

The evaluation used (the same is used Section 3) consists in comparing the content (textlines)

of each extracted row against the ground truth rows, considering each as a set. A Jaccard index

is used to compute a similarity score, and a threshold (TH) is used in order to determine if two

rows are similar or not. The value 100 is very strict since both rows have to be the exact same

sets. Table 5 provides evaluation for 3 values: 100, 90, 80.

https://read02.uibk.ac.at/wiki/index.php/Document_Understanding_Table#BIO_Annotation

D6.14 DU tools 31th December, 2017 10/17

Table 5: Best evaluation for the ABP and NAF collection

TH ABP NAF

 P R F1 P R F1

100 91.7 91.9 91.8 71.9 69.5 70.7

90 96.0 96.2 96.1 77.7 75.0 76.3

80 97.2 97.3 97.3 82.6 79.8 81.1

A larger evaluation with 1098 tables (ABP) shows a precision and recall around 90% for

TH=90%.

3. Using Graphical Separators for Table Understanding

We discuss in this section the use of graphical separators for two tasks: column segmentation

and row segmentation. While the use of graphical separators seems to be a strong baseline for

column segmentation, its use of row segmentation depends on the collection.

3.1 Columns Segmentation
This section describes the work done on column segmentation in the case of books where

similar tables are printed on each page of this book. This is a very frequent use-case, and the

idea is to leverage this redundant information in order to design a robust tool. We explored

several approaches and the currently most effective (and simpler!) one is now sketched. One

basic one is to use the vertical graphical separators (see Figure 2).

Figure 2: Graphical Separators recognised by CVL tool.

D6.14 DU tools 31th December, 2017 11/17

Table 6: Evaluation of the use of graphical separators according to their minimal length (in points) for the ABP and

NAF collection (TH=90%).

We also tried to use the fact that a book in both collection uses the same table template over

pages. We basically align the sequence of separators of a given page with the sequence of

separators of the next page (using the well-known Dynamic Time Warping algorithm). We call

this approach the dual approach (using 2 pages). The expectation is to filter out wrong

separators, only the correct ones occurring on both pages (and then being matched by the DTW

algorithm). But as Table 7 shows, the improvement is small (ABP) or the method has a negative

impact on the recall (NAF). We’ll investigate further this dual approach, but the single page

approach already provides a strong baseline.

Table 7: Evaluation of single and dual strategy for the ABP an NAF collection (th=90; min separator=20)

Dataset Precision Recall F-1

ABP – single 86.5 89.7 88.1

ABP – dual 88.1 89.6 88.8

NAF – single 84.9 81.1 83.0

NAF – dual 84.2 77.2 80.6

3.2 Row Segmentation
A similar experiment was conducted for segmenting a table into rows. Here only single page

approach has been tested (dual is not meaningful). The evaluation shows for the ABP collection

pretty good results. In this collection most (90%) of the rows are delimited with graphical

separators. Similar to the Column detection problem, considering short separators (50 points)

provides best results. Considering too small separators (20 points) introduces a lot of noise:

those short separators correspond to underlined words. We can note that precision is very good,

but recall is lower (compared to our method: 90% for precision and recall): this is mostly due

to tables where no separators are used for delimiting rows.

For the NAF collection, where rulers are used at the line level, no graphical separator is used to

delimit the rows. In this case, results are simply very bad. Nevertheless, the ABP dataset shows

that graphical separators can be used as useful information for a more sophisticated approach.

This will be investigated in 2019.

Minimal

separator

length

ABP NAF

 P R F-1 P R F-1

10 60.6 68.2 64.2 77.9 74.8 76.3

20 86.5 89.7 88.1 84.9 81.1 83.0

50 89.6 91.3 90.4 86.3 79.3 82.7

100 89.7 89.8 89.8 85.7 74.6 79.8

200 89.3 86.7 87.9 84.4 68.9 75.9

D6.14 DU tools 31th December, 2017 12/17

Table 8: Evaluation of the row segmentation task with graphical separators.

2.4. Information Extraction Component

In Year 2, an Information Extraction component was added to the TranskribusDU package in

order to address Textual Information Extraction (hereafter IE) from table. IE, in our context,

aims at tagging some textual elements organized in table cells. In our main use case (ABP) a

record (table row) corresponds to an entry in a death book (first name, last name, family status,

location, death date, occupation, death reason, …). A cell can contain various information

(death date and location, names and row number for instance), so each word in a cell has to be

correctly tagged. Error! Reference source not found.Figure 3 shows some complex situations

where fine tagging is required.

(a)

(b)

(c)

Figure 3. (a) shows the table header and the first two rows corresponding to a record. (b) the name field with a

numbering information (second and third item for the given year). (c) The death date field is structured (date and

hour), while only the month day and month fit the database schema, and have to be extracted.

Minimal

separator

length

ABP NAF

 P R F-1 P R F-1

20 70.2 72.5 71.3

50 89.8 82.2 85.8 35.6 17.5 23.5

100 85.9 73.1 79.0 26.6 8.8 13.2

200 90.3 79.5 84.6

D6.14 DU tools 31th December, 2017 13/17

In order to tackle this problem, we chose to use a Machine Learning approach: we trained a

tagger in order to recognize each field of a record. In order to build the training set, one solution

could have been to annotate some pages of the collection. Instead, the solution we chose was to

generate a synthetic training set: ABP has already a database with thousands on (partial) entries.

The idea is to use these entries (as dictionary) in order to generate a training set. As mentioned

in the D6.14 deliverable, we use synthetic data to train a state-of-the-art Machine Learning

component (based on BiLSTM).

Table 9: Comparison of the Information Extraction Evaluation between Year 2 and Year 3. The TH parameter

indicates the ‘edit-distance’ value for which the match is considered as correct. Document 27734, 151 pages

 Year 2 Year3

Similarity Precision Recall F-1 Precision Recall F-1

TH=100 37.5 24.7 29.8 40.0 32.0 36.4 (+6.8)

TH=80 60.6 40.0 48.2 72.7 55.2 62.7 (+14.5)

TH=75 67.1 44.3 53.4 77.1 58.4 66.5 (+12.1)

TH=66 76.1 50.2 60.5 84.8 64.3 73.2 (+12.7)

A sub collection of 3 documents (254 pages), for which the full manual indexing was done, was

used in order to evaluate the IE tool for the full record fields:

 First name, last name, occupation, location, status, death reason, doctor name, death

year, death burial, age.

Table 10: Evaluation of records fields (with dictionary).

Document

ID

First name Last name Death reason location occupation

30348 92.6 81.5 86.7 84.9 67.5 75.2 93.4 82.8 87.8 43.7 23.2 30.0 61.8 54.3 57.8

30349 91.7 79.4 85.1 73.2 61.0 66.6 78.5 71.0 74.6 35.1 18.9 24.6 36.8 33.0 34.8

30350 69.2 53.4 60.3 28.9 19.9 23.6 72.3 64.0 67.9 25.5 17.5 2038 46.0 38.4 41.8

Document

ID (con’t)

situation

30348 86.3 58.9 70.1

30349 63.8 54.2 58.6

30350 57.3 48.9 52.8

As Table 10 shows, for some documents (30348, 30349), the quality of the extraction is pretty

good (especially for names). The last document is still very challenging for the HTR+ model.

The main differences between record fields are due to various reasons:

 For the location field, most of the time, a “[ditto] sign is used, making the evaluation

very bad. Secondly, the database indicates the name of the parish, while a more specific

location can be extracted.

 For the occupation field, the German hyphenation (at word level, and not syllable level)

requires a good processing of the phenomenon. A modification of the IE tool has been

D6.14 DU tools 31th December, 2017 14/17

done for better taking into account this, but it has to be integrated in the workflow. Its

purpose is simply to recognize and merge hyphenated text, and in the same time to tag

them properly.

 Some fields (familial situation, dates, ages) require some post-processing in order to be

properly evaluated: for instance, a frequent error is the familial situation “Wittwe(r)” in

the document, while keyed “verwitwet” in the database.

 Dates are outside the evaluation: a numerical representation is stored in the database

(month number, month day number)

In general, as often for a IE task, a post-processing step is required in order to normalize the

extracted data.

Another aspect is the use of dictionary combined with the HTR. In the previous results (Table

10), a dictionary was used. This dictionary contains a weighted list of the database entries for

the various records fields. Used that way, this dictionary, while (slightly) improving the first

name and last name fields, degrades the recognition of the other fields (see results without

dictionary Table 11). A more specific use, a dedicated dictionary per column for instance,

seems welcome.

Table 11: Evaluation of records fields (without dictionary).

Document

ID

First name Last name Death reason location occupation

30348 94.4 80.8 87.1 89.5 70.5 78.9 94.9 84.6 89.4 49.8 26.5 34.6 74.0 63.5 68.4

30349 93.2 77.3 84.5 77.9 63.5 69.9 79.2 70.0 74.3 45.4 25.1 32.3 51.8 44.6 47.9

30350 72.2 48.0 57.7 29.4 18.8 23.0 70.2 62.6 66.2 29.8 21.8 25.2 49.7 41.3 45.1

Document

ID (con’t)

situation Doctor/nurse

name

30348 87.5 87.5 59.7 85.8 79.4 82.5

30349 64.8 64.8 54.7 83.0 78.1 80.5

30350 59.5 49.2 53.9 75.1 62.5 80.3

Table 12: Positive impact of a dictionary for first/last names detection. Document 27734, 151 pages

 Year 2 (with dictionary) Year3 Year3 no dictionary

Similarity Precision Recall Precision Precision Recall F-1 Precision Recall F-1

TH=100 37.5 24.7 40.0 40.0 32.0 36.4

(+6.8)

29.3 20.7 24.3

TH=80 60.6 40.0 72.7 72.7 55.2 62.7

(+14.5)

70.2 49.7 58.2

TH=75 67.1 44.3 77.1 77.1 58.4 66.5

(+12.1)

75.4 53.3 62.5

TH=66 76.1 50.2 84.8 84.8 64.3 73.2

(+12.7)

85.4 60.5 70.8

While considered as very challenging, we consider that, end of 2018, most of the

technological components and datasets are available for processing the ABP collection A

full processing the death, birth and wedding records is scheduled in 2019.

D6.14 DU tools 31th December, 2017 15/17

3. Resources:

3.1. Software Repositories

TranskribusPyClient: https://github.com/Transkribus/TranskribusPyClient, A Pythonic API and
some command line tools to access the Transkribus server via its REST API

Transkribus DU toolkit: https://github.com/Transkribus/TranskribusDU, Document
Understanding tools

 crf: (graph-CRF; Approach 1): core ML components for training and applying CRF
models

 spm: (Sequential Pattern Mining; Approach 2): core components for mining
documents

 use-cases: examples of end-to-end workflows (current more toy examples)
o StaZH
o ABP

3.2. Related documentation under WIKI:

The READ wiki page is constantly updated with last developments.

https://read02.uibk.ac.at/wiki/index.php/Document_Understanding : main page entry for DU
activities

https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API: page describing the
Python REST API (see also annex 1)

3.3. Data under Transkribus

Ask permission to access these collections (contact us)

 READDU (collection ID: 3571). StaZH documents annotated with logical labels

 BAR_DU_testcollection (collection 7018). BAR annotated collection (Section 4.3)

 DAS2018 (collection ID 9142). ABP dataset for table (Section 4.2)

4. References

1. https://transkribus.eu/wiki/index.php/REST_Interface

2. J.-L. Meunier, “Joint Structured Learning and Prediction under Logical Constraints in

Conditional Random Fields”, CAp 2017

3. Martins, A. F., Figueiredo, M. A., Aguiar, P. M., Smith, N. A., Xing, E. P. “AD3:

alternating directions dual decomposition for MAP inference in graphical models”, JMLR

2015.

4. T.N. Kipf, M. Welling: Semi-Supervised Classification with Graph Convolutional

Networks. CoRR abs/1609.02907, 2016.

https://github.com/Transkribus/TranskribusPyClient
https://github.com/Transkribus/TranskribusDU
https://read02.uibk.ac.at/wiki/index.php/Document_Understanding
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API
https://transkribus.eu/wiki/index.php/REST_Interface
http://dblp.uni-trier.de/db/journals/corr/corr1609.html#KipfW16

D6.14 DU tools 31th December, 2017 16/17

5. S. Clinchant, H. Déjean, J.-L. Meunier, Eva Maria Lang, Florain Kleber, Comparing

Machine Learning Approaches for Table Recognition in Historical Register Books,

submitted.

7. Deliverable 6.8; Table and form analysis tool P2 (CVL)

8. Deliverable 8.11 ; Large Scale Demonstrators. Keyword Spotting in Registry Books P2

(ABP)

9. Deliverable 8.5; Evaluation and Bootstrapping P2 (StAZH)

10. Lafferty, J., McCallum, A., Pereira, F. “Conditional random fields: Probabilistic models

for segmenting and labeling sequence data”, ICML 2001

11. Code

TranskribusPyClient: https://github.com/Transkribus/TranskribusPyClient

TranskribusDU : https://github.com/Transkribus/TranskribusDU

CRF : https://github.com/Transkribus/TranskribusDU/tree/master/src/crf

SPM : https://github.com/Transkribus/TranskribusDU/tree/master/src/spm

GCN: https://github.com/Transkribus/TranskribusDU/tree/master/src/gcn

Row Detection : https://github.com/Transkribus/TranskribusDU/tree/master/src/tasks

Information Extraction :

https://github.com/Transkribus/TranskribusDU/tree/master/usecases/ABP/src

Contributed to Pystruct: https://github.com/Transkribus/pystruct

Contributed to AD3 : https://github.com/Transkribus/AD3

Annex 1: Transkribus Python API

From READ Wiki: Transkribus Python API ; date: 05/12/2018

(We recommend you to click on the link to access an update version; new items are in bold)

 1 Reference Documents:

 2 Code

o 2.1 Note on the proxy settings

o 2.2 on Transkribus Login

 3 Command Line Utilities

o 3.1 Persistent login

o 3.2 Collections

https://read02.uibk.ac.at/wiki/images/d/d0/D6.8.pdf
https://read02.uibk.ac.at/wiki/index.php/File:READ_D8_11_LSD_Passau.docx
https://read02.uibk.ac.at/wiki/images/3/35/READ_8.5-StAZH-v1.pdf
https://github.com/Transkribus/TranskribusPyClient
https://github.com/Transkribus/TranskribusDU
https://github.com/Transkribus/TranskribusDU/tree/master/src/crf
https://github.com/Transkribus/TranskribusDU/tree/master/src/spm
https://github.com/Transkribus/TranskribusDU/tree/master/src/gcn
https://github.com/Transkribus/TranskribusDU/tree/master/src/tasks
https://github.com/Transkribus/TranskribusDU/tree/master/usecases/ABP/src
https://github.com/Transkribus/pystruct
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Reference_Documents:
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Code
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Note_on_the_proxy_settings
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#on_Transkribus_Login
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Command_Line_Utilities
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Persistent_login
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Collections

D6.14 DU tools 31th December, 2017 17/17

 3.2.1 Add Document(s) to Collection

 3.2.2 Duplicate Document(s) from Collection to Collection

 3.2.3 Create a Collection

 3.2.4 Delete a Collection

 3.2.5 List a Collection

 3.2.6 Managing transcripts of a document

 3.2.6.1 Filtering the last transcript of each page

 3.2.6.2 Filtering based on Page Numbers

 3.2.6.3 Filtering based on Dates

 3.2.6.4 Filtering or Checking based on Status

 3.2.6.5 Filtering or Checking based on User

 3.2.6.6 Generating a TRP file

 3.2.6.7 Operation

 3.2.6.8 Usage

 3.2.7 Transkribus_downloader

 3.2.8 Transkribus_uploader

 3.2.9 TranskribusDU_transcriptUploader

o 3.3 LA (Layout Analysis)

 3.3.1 analyze the Layout

 3.3.2 analyze the Layout New (URO baseline Finder)

 3.3.3 analyze the Layout (batch)

 3.3.4 Table Tempate Matching

o 3.4 Recognition

 3.4.1 list the HTR HMM Models

 3.4.2 apply an HTR HMM Model

 3.4.3 list the HTR RNN Models and Dictionaries

 3.4.4 Train an HTR RNN Model

 3.4.5 apply an HTR RNN Model

 3.4.5.1 upload private 'temp' dictionaries

 3.4.5.2 Get status of current job

 4 (Non-Urgent) Questions

o 4.1 Locking

o 4.2 Page Status

o 4.3 Storing Data

https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Add_Document.28s.29_to_Collection
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Duplicate_Document.28s.29_from_Collection_to_Collection
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Create_a_Collection
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Delete_a_Collection
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#List_a_Collection
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Managing_transcripts_of_a_document
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Filtering_the_last_transcript_of_each_page
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Filtering_based_on_Page_Numbers
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Filtering_based_on_Dates
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Filtering_or_Checking_based_on_Status
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Filtering_or_Checking_based_on_User
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Generating_a_TRP_file
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Operation
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Usage
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Transkribus_downloader
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Transkribus_uploader
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#TranskribusDU_transcriptUploader
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#LA_.28Layout_Analysis.29
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#analyze_the_Layout
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#analyze_the_Layout_New_.28URO_baseline_Finder.29
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#analyze_the_Layout_.28batch.29
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Table_Tempate_Matching
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Recognition
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#list_the_HTR_HMM_Models
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#apply_an_HTR_HMM_Model
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#list_the_HTR_RNN_Models_and_Dictionaries
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Train_an_HTR_RNN_Model
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#apply_an_HTR_RNN_Model
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#upload_private_.27temp.27_dictionaries
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Get_status_of_current_job
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#.28Non-Urgent.29_Questions
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Locking
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Page_Status
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Storing_Data

