RECOGNITION & ENRICHMENT
OF ARCHIVAL DOCUMENTS

D7.8
HTR Engine Based on NNs P2

Building deep architectures with TensorFlow

Max Weidemann, Johannes Michael, Tobias Griining, Roger Labahn
URO

Distribution: http://read.transkribus.eu/

READ
H2020 Project 674943

This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No 674943

Project ref no.

H2020 674943

Project acronym

READ

Project full title

Recognition and Enrichment of Archival Documents

Instrument

H2020-EINFRA-2015-1

Thematic priority

EINFRA-9-2015 - e-Infrastructures for virtual re-
search environments (VRE)

Start date/duration

01 January 2016 / 42 Months

Distribution Public
Contract. date of deliv- | 31.12.2017
ery

Actual date of delivery 01.12.2017
Date of last update 05.12.2017
Deliverable number D7.8

Deliverable title

HTR Engine Based on NNs P2

Type Demonstrator
Status & version Final
Contributing WP(s) WP7
Responsible beneficiary URO

Other contributors

Internal reviewers

Joan Andreu Sanchez (UPVLC)

Author(s)

Max Weidemann, Johannes Michael, Tobias Griining,
Roger Labahn

EC project officer

Martin Majek

Keywords

RNN, LSTM, CNN, segmentation free, TensorFlow

Contents

Executive Summary 4
1 Introduction 4
2 TensorFlow — A C++ based Machine Learning Library 5
3 New architectures 5
3.1 Long Short-Term Memory)
3.2 Convolutional Neural Networks 6
3.3 Pooling Layer 7
3.4 Construction of the new architecture 7
4 Experiments 8
5 Outlook 10

D7.8 HTR Engine Based on NNs P2 3/ 11

Executive Summary

The second year’s deliverable describes the importance of state-of-the-art Neural Net-
work based HTR models that yield a higher accuracy in terms of CER in comparison
to architectures currently used in Transkribus. To build such models it is necessary
to understand the underlying key components from the field of deep learning like the
Convolutional Neural Network. Finally, a tool is needed to implement new and more
complex architectures easily. Hence, the main focus of year two was research on the one
hand and finding and familiarizing with a suitable tool on the other hand.

1 Introduction

Deep learning is currently the fastest-growing field in machine learning. It covers al-
gorithms that use deep hierarchies of concepts to learn more complicated ones. These
include deep Neural Networks (NN), Recurrent Neural Networks (RNN) and Convolu-
tional Neural Networks (CNN) which are used in fields like speech recognition, computer
vision, machine translation or natural language processing. But also fields like Hand-
written Text Recognition (HTR) or Keword Spotting (KWS) benefit from such deep
structures. Thus, deep learning, especially the CNN, was the main topic at the IC-
DAR2017, an international conference about HTR and document analysis. For this
reason, one of the main tasks of year two was to take a closer look at the topics of deep
learning and find a way to integrate them into Transkribus. TensorFlow, a machine
learning library that is introduced in the following section offers a great opportunity to
realize this. The underlying task is formulated as followed.

Task 7.3 — Neural Network based HTR

The following is copied from the Grant Agreement:

This task comprises all investigations concerning Neural Network (NN) based HTR
technology. It focuses on the NN training based upon a sufficiently large number of line
images along with their textual transcripts, and how the NN output can be effectively
decoded into word graphs for further processing in the overall workflow. This covers both
training and decoding rely on well-known machine learning techniques that were exten-
sively used and extended by the UPVLC and URO. Further flexibility, improvement and
particular issues require ongoing research: maintaining stability of the training process
for avoiding degenerated NNs; speeding up the training process for advanced flexibility;
adapting to specific data for effective extendibility; researching on word-based graphs
and character-based graph generated from NN-based decoders for interactive transcrip-
tion and KWS; incorporating advanced language models into the decoding procedures
for improved overall performance in transcription and search tasks. Furthermore the NN
based HTR engine available at URO will be customized for use in the project workflow.
From a research or an implementation point of view, we will then investigate the inter-
actions of the algorithms or the engine, respectively, across the interfaces to adjacent
workflow modules.

D7.8 HTR Engine Based on NNs P2 4/ 11

2 TensorFlow — A C++ based Machine Learning
Library

TensorFlow [1] is an open-source software library of Google for numerical computations,
mainly used for machine learning applications. It was released at the end of 2015 and left
its beta state in February 2017. TensorFlow computations are depicted using dataflow
graphs, where the edges represent multidimensional data arrays (tensors, hence the
name) that communicate via mathematical operations (ops) represented by the nodes.

TensorFlow has many advantages. There is a big community behind TensorFlow and has
been declared the number one repository in machine learning on Github. In research and
production, it is currently used by various teams in commercial Google products such
as speech recognition, Gmail, Google Photos or the Google search. Because TensorFlow
is under constant development there is no need to implement most of the parts that are
being used in a model by yourself. Therefore it is possible to recreate many state-of-the-
art architectures quickly and easily. This includes Feedforward NNs, RNNs, CNNs and
more. E.g. it takes only a few lines of code to build a multi-layer NN. Besides, one can
use the computing power of one or more GPUs for tasks like matrix multiplications to
speed up the overall training process.

3 New architectures

A study [5] showed that BLSTM-based HTR recognizers can perform as well as MDLSTM-
based HTR systems in terms of recognition accuracy and outperforms them in terms
of memory usage and running time. Therefore, the new models are still using RNNs
but the 2-D LSTM cells are replaced by BLSTMs. The concepts of (Bidirectional) Long
Short-Term Memory ((B)LSTM) networks and Multidimensional LSTM (MDLSTM)
networks are beyond the scope of this deliverable. For more details we refer to |2, 6].
Still, a brief introduction is given in section 3.1.

It should be noted here that the output format as introduced in the first year deliverable
D7.7 is still supported in the new architectures and decoding can be applied on the con-
fidence matrices (ConfMats) as before (see [7]). The new architectures are segmentation
free and support context sensitive processing as well.

3.1 Long Short-Term Memory

Basically, an LSTM network is an RNN with a special kind of cell that is able to store
information for a longer time period while an MDLSTM network introduces a recurrence
along multiple axes (for HTR the x-axis and y-axis of an image). In the bidirectional
case (BLSTM) the amount of input information is increased by introducing two RNN
layers with different directions, one for positive time direction and another for negative
time direction (i.e. along the x-axis). The idea is visualized in Figure 1.

D7.8 HTR Engine Based on NNs P2 5/ 11

Figure 2: General structure of a convolutional block.

3.2 Convolutional Neural Networks

CNNs as introduced in [3] are a specialized kind of neural network for processing data
that has a known grid-like topology, e.g. images which can be viewed as a 2-D grid of
pixels. As the name indicates the network employs a linear operation called convolution.
In the field of machine learning we apply a discrete convolution

(I * K)i,j = Z Z Im,nKi—m,j—n
= Z Z]i—m,j—nKm,n

where the input (the image) I and the kernel K are 2-D arrays where K holds the
trainable parameters. The kernel can also be viewed as a sliding window that is shifted
over the image I (with a certain stride) to detect local features. The output of the
convolution is often referred to as feature map. The concept is visualized in Figure 2.

Sparse (or local) connectivity and parameter sharing are two major advantages of con-
volution if used in machine learning. In traditional NN layers every output unit is
connected with every input unit, such that we have seperate parameters for describing
the interaction between these units. In CNNs, however, this number of paramaters de-
pends only on the size of the kernel K which is usually significantly smaller than the
input image. The kernel makes it possible to detect small features like edges with much
less parameters yielding lower storage costs, hence reducing the memory requirements

D7.8 HTR Engine Based on NNs P2 6/ 11

224x224x64

112x112x64

pool @ fmmm e - max pool

|
| 1
l [! 15} 2 x 2 kernel 6]8
: 3
I 1
|
I

|

4 I

|

8 |

0 2 x 2 stride 314 :

224 downsampling e 4 I
112 :

224

Figure 3: Max pooling operator used to downsample a layer output and improve gener-
alisation.!

of the model. Parameter sharing is also used to control the number of parameters in a
model. It follows the idea that if a feature is useful at some position in an image, then
it should also be useful at a different position. In other words, parameter sharing easily
enables the system to detect similar structures at different locations of the image.

3.3 Pooling Layer

Pooling can be used to lower the computational costs even more with non-linear down-
sampling. It reduces the spatial size of the representation to decrease the amount of
parameters and to create high-level features out of low-level ones. Max pooling is a
method that is used most frequently where a max filter is applied to rectangular (usu-
ally) non-overlapping subregions of a layers output as depicted in Figure 3.

3.4 Construction of the new architecture

A brief introduction into the new competing architecture should be given here. We are
using a deep architecture mainly consisting of nested CNN and RNN layers with optional
Pooling layers. An example can be seen in Figure 4. As already mentioned, the CNN
layers do a 2D-feature extraction. Explicit downsampling is achieved by the pooling
layers. Once a certain feature is present it suffices to know about its relative location
in the image, so you don’t necessarily lose (a lot of) information during this process.
Generally, subsampling reduces the spatial dimension of the input, which in turn results
in less computational cost.

The RNN layers introduce dynamic temporal behaviour by means of recurrent connec-
tions and allow context sensitive processing as can be seen in D7.7 section 3.2. Instead
of using multidimensional LSTM cells we now employ bidirectional LSTM cells which
leads to faster and more efficient models with negligable changes in performance. RNNs
can process arbitrary sequences of inputs which makes them applicable to tasks such
as unsegmented HTR as we have already seen in D7.7 section 3.1. Finally, the RNN
output in terms of ConfMats is unchanged in comparison to previous HTR models (see
D7.7 section 3.3).

'http://cs231n.github.io/convolutional-networks/

D7.8 HTR Engine Based on NNs P2 7/ 11

http://cs231n.github.io/convolutional-networks/

oO——————- Output ConfMat

CNN | ----- Convyyy, 1, [classes| feature maps
512 LSTM cell units

512 LSTM cell units

ConvieoX>. 64 feature maps

256 LSTM cell units
MaxPool} %2

Convg X}, 32 feature maps

Convg <2, 8 feature maps
——————— Input image

Figure 4: The proposed HTR model: A combination of various CNN and BLSTM blocks
with one additional pooling layer. The subscript in Conv/MaxPoolZx% de-
scribes the size of the kernel and the superscript defines the stride along both
dimensions. Basically, |classes| is the number of characters present in the

ConfMat.

The network is entirely differentiable and can be trained end-to-end in a supervised man-
ner via the backpropagation algorithm. TensorFlow uses a technique called reverse mode
automatic differentiation which basically means that it provides functions to compute
symbolic (partial) derivatives for a given computation graph automatically. This allows
us to create and experiment with complex architectures where we do not have to worry
about the intricacy of propagating errors through various layers and functions. How-
ever, deep and more complex models require even more computing power than before.
The TensorFlow API supports Multi-GPU training in synchronous and asynchronous
settings, enabling us to train and test our proposed architectures and to get results in a
reasonable timeframe given the necessary hardware.

4 Experiments

First tests demonstrate a performance boost of up to 50 % in terms of Character Error
Rate (CER) compared to the Sequential Processing RNN (SPRNN) [4] used in year
one. The experiments were performed on the StAZH data set that is described in the
following.

D7.8 HTR Engine Based on NNs P2 8/ 11

a) sample from val a

o WW%W%|
(b) sample from val b

Figure 5: Sample lines from the two different validation sets.

Data set

The data set for the experiments was chosen from 800 pages of the Staatsarchiv des
Kantons Ziirich? (StAZH) collection. This set consists of Kantonsratsprotokolle and
Regierungsratsbeschliisse whereas the former contains less than 10 % of the overall amount
of text.

The texts consist of resolution/enactment of the cabinet as well as the parliament of the
state of Zurich (starting in 1848 “canton”). The first documents were written in 1803,
the last in 1882. The script is a very well-formed and highly trained German current.
Different involved scribes are from a paleographic point of view quite similar but still
distinguishable.

A subset of this collection was used for training the neural network: 4 pages from every
year, i.e., 320 pages. For validation of the models two separate validation sets were used
(see Figure 5):

val a contains 1 page of every second year from the above mentioned 800 pages, i.e., in
total 40 pages.

val b consists of 20 pages of minutes parliament of the state of Zurich from the year
1882 (document id 13709). The writers are unknown to the neural network.

2The Staatsarchiv Ziirich is a large scale demonstrator of the READ project.

D7.8 HTR Engine Based on NNs P2 9/ 11

Table 1: Comparison of the SPRNN and the TensorFlow network on the StAZH dataset
in terms of CER.

Validationset ‘ SPRNN TensorFlow

Same writer in train and val set (val_a) | 14.48% 7.18%
Different writer / same domain (val_b) | 22.61% 16.38%

Some results on the StAZH dataset are shown in Table 1. The comparative model
consists of several CNN layers followed by RNN layers as introduced in section 3 and
D7.7.

From the results one can conclude that the new HTR causes a vast drop in error rate if
we use the trained network for similar fonts/writing styles. It also becomes clear that
the performance of the network depends heavily on the choice of training data. One can
not assume that a model trained on a particular dataset means that it can be applied
to any other dataset without loss in HTR accuracy. By now the models are generated
in Python and can then be used in Java by means of a wrapper.

5 Outlook

The experiments show that deeper architectures using CNNs and RNNs lead to a signifi-
cant improvement in HTR accuracy. Therefore, one of the main goals in year three will be
the integration of TensorFlow models into Transkribus. Finally, writer adaptation is an-
other task that will be tackled. This involves adapting a pre-trained writer-independent
network to a specific writer with a small amount of training data and comparing it with
the original pre-trained HTR model which is based on large amounts of data. To cite
deliverable D8.4 (section 2.2.2) the question is “|H|ow many writers can be fitted into one
model with CER below 10 % and whether it is possible to build models broad enough
to recognize writers/hands unknown.”

References

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, lan Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqgiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

D7.8 HTR Engine Based on NNs P2 10/ 11

2l

13l

[5]

17l

Alex Graves and Jiirgen Schmidhuber. Offline handwriting recognition with multidi-
mensional recurrent neural networks. In Advances in neural information processing
systems, pages H45-552, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097-1105, 2012.

Gundram Leifert, Tobias Straufs, Tobias Griining, Welf Wustlich, and Roger Labahn.
Cells in multidimensional recurrent neural networks. The Journal of Machine Learn-
ing Research, 17(1):3313-3349, 2016.

Joan Puigcerver. Are multidimensional recurrent layers really necessary for handwrit-
ten text recognition? In Proceedings of the International Conference on Document
Analysis and Recognition, ICDAR, pages 67-72, 2017.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEFE
Transactions on Signal Processing, 45(11):2673-2681, 1997.

Tobias Straufs, Tobias Griining, Gundram Leifert, and Roger Labahn. Citlab argus
for keyword search in historical handwritten documents-description of citlab’s sys-
tem for the imageclef 2016 handwritten scanned document retrieval task. In CLEF
(Working Notes), pages 399412, 2016.

D7.8 HTR Engine Based on NNs P2 11/ 11

	Executive Summary
	Introduction
	TensorFlow – A C++ based Machine Learning Library
	New architectures
	Long Short-Term Memory
	Convolutional Neural Networks
	Pooling Layer
	Construction of the new architecture

	Experiments
	Outlook

