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1. Executive summary

The Venice Time Machine (VTM) project aims at building a multidimensional model of
Venice and its evolution covering a period of more than 1000 years. The State Archives
of Venice possesses an estimated 80 km of shelves that are filled with administrative
documents, from birth registrations, death certificates and tax statements, all the way
to maps and urban planning designs. These archives are currently being digitized, tran-
scribed and indexed, setting the base of the largest database ever created on Venetian
documents.
The Venice Time Machine project wants to give the archives a new, virtual existence
on the Web through Cloud access and online tools. It aims to reanimate Venice’s past
life from them by re-creating social networks and family trees, and visualizing urban
development and design.
As one of the four large scale demonstrators of the READ project, the objective is to
provide an environment to test and use the technologies developed within the READ
consortium on large real-world data and to develop new solutions to deal with large
historical archive indexing and retrieval.

2. Main contributions

The work of the second year was structured around the problematic of the information
extraction on cadaster maps. Archival documents do not only consist of handwritten
text documents, for instance, cadaster map documents are an example of complex and
rich document which structure is very different from ‘traditional’ archival documents.
Cadaster plans provide information about the city urban shape as well as information
about the urban population and city functions (census information, property, rent prices,
etc.) The 1808 Venetian cadaster enables the study of the social and the economic
structure of Venice but also its urban organization, thus being a key document for
reconstructing dense representations of the history of the city. Being able to easily access
and search these archival documents opens new perspectives to study and visualize the
evolution of a city and its inhabitants.
The processing of cadaster maps can be separated into the transcription system for the
recognition of parcels’ numbers and the segmentation system for the extraction of the
parcel’s shapes. As we show in the next sections, both systems can be used for processing
other type of documents and are thus not specific to cadaster plans processing. Thus
we also worked on processing handwritten text documents, both on regions and lines
segmentation and transcription.

The contributions of EPFL group to the READ project are divided in three sections :

• Transcription system
• Document Segmentation tool (in collaboration with Benoit Seguin)
• Information extraction on cadaster maps
• Extension of NCSR Demokritos tools for python developers
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2.1. Transcription using Convolutional Recurrent Neural
Networks (CRNN)

2.1.1. Architecture

We developed a transcription system based on the combination of convolutional and
recurrent neural networks as described in [1] for handwritten text (Fig. 1a). The convo-
lutional neural network (CNN) captures hierarchical spatial information, with the first
layers capturing low level features and later ones capturing high level features. In other
words, CNN are good at encoding spatial data. On the other hand, Recurrent Neural
Networks (RNN) are used to capture temporal (or sequential) data, with the ability
to capture contextual information within a sequence of arbitrary length. This systems
combines the best of both worlds to handle multi-dimensional data as sequences.

From an input image, the convolutional layers extract a sequence of compact repre-
sentations, the features vectors, which correspond to the columns of the feature map.
They are processed from left to right of the image to form a sequence of local image
descriptors (Fig. 1b).

(a) Network architecture. The architecture
consists of three parts: 1) convolutional
layers, which extract a feature sequence
from the input image; 2) recurrent lay-
ers, which predict a label distribution
for each frame; 3) transcription layer,
which translates the per-frame predic-
tions into the final label sequence. [1] (b) Feature Sequence [1]

The sequence is then input to the recurrent layers which consist of stacked bidirectional
Long Short-Term Memory (LSTM) cells. LSTM cells [2] have the ability to capture
long-range dependencies but they are directional, and thus only use past contexts. Since
in image-based sequences context from both directions are useful and complementary,
one forward and one backward LSTM cells are combined to form bidirectional LSTM
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which are then stacked to have several recurrent layers. The recurrent network outputs
per-frame predictions (probabilities) that need to be converted into a label sequence.

In the transcription layer, the connectionist temporal classification [3] is used in order
to obtain the “label sequence with the highest probability conditioned on the per-frame
predictions”. The sequence label (i.e the word or the sentence) is found by taking the
most probable label at each time step and mapping the separated labels to the correct
sequence label (see [3] to have the detailed explanation on how the repeated and ‘blanks’
labels are dealt with).

2.1.2. Training

The training was performed on a set of annotated data form various types of Venetian
handwritten documents. The set consists of image segments of names, places and num-
bers that have been transcribed by experts in Venice. The content of the image segments
ranges from one to several words. The set was randomly split into 90 % for training and
10% for testing. The training process took a few hours (between 2 and 6) with a Nvidia
Titan X depending on the size of the image dataset.
Several experiments were performed using different set of characters (called ’Alphabet’
here after) and resulted in one model per Alphabet.
Data-augmentation such as slight rotations and color changing (hue, contrast and satu-
ration) was used in order to artificially increase the size of the dataset and its variety.

2.1.3. Results

To evaluate the performance of the system we use the Character Error Rate (CER)
measure on the test set (CER = (i + s + d)/n with i, s, d, n the number of character
insertions, substitutions, deletions and total characters respectively). The numerical
results are shown in Tab. 1. As expected, we observe that alphabet (3) has the lowest
CER, since there are only 10 different characters and the number of image segments
that can be used to train the system is quite high. The alphabet (2) has lower CER
than alphabet (1) since most of the image segments composing the dataset are images
of numbers, thus increasing the performance of the system. A few randomly selected
examples can be seen in Appendix A.

Alphabet # image segments CER
(1) Capital-lowercase-symbols 24035 0.0887
(2) Capitals-lowercase-digits-symbols 96198 0.045
(3) Digits 72326 0.0133

Table 1: The Character Error Rate (CER) for each Alphabet in Tab. 2
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Alphabet Set of characters
(1) Capital-lowercase-symbols A-Za-z’.,: -=
(2) Capitals-lowercase-digts-symbols A-Za-z0-9’.,:; - _ (̄)[]/
(3) Digits 0-9

Table 2: The set of characters contained in each alphabet

2.2. Document segmentation using pixel-wise segmentation

2.2.1. Architecture

In order to extract regions of interest from documents we developed a general tool for
segmenting documents. The system is based on neural networks that allow pixel-wise
segmentation by assigning each pixel a label. The architecture is composed of an encoder
(’contracting’) network followed by a decoder (’expansive’) network and is inspired by
the U-Net and SegNet architectures [4, 5]. We use as encoder network a pretrained
convolutional neural network from which the last fully connected layers are removed.
The decoder network converts the low resolution features maps of the encoder to full
input resolution features maps by combining the upsampled features maps with the
corresponding resolution features maps from the encoder (see Fig. 2 to understand the
general idea). Each encoding layer has a corresponding decoding layer, thus resulting
in a quasi symmetrical u-shaped architecture. In the case of standard classification, the
last layer is a soft-max layer which assigns a probability to each pixel independently and
the segmentation output is simply the class with maximum probability for each pixel.
If we are interested in multilabel classification we use as last layer a sigmoid layer.

Figure 2: U-Net Architecture. The gray arrows show the combination of upsampled
feature maps from the decoder with high resolution feature maps from the
encoder to recover full input resolution feature maps. [4]
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2.2.2. Training

We used two architectures for the experiments, one using VGG-16 [6] and the other
using Resnet-50 [7] pre-trained model as encoders, which are two well-known and widely
used architectures. The pre-trained weights of convolutional layers were used in order
to take advantage of their already learned features and diminish the cost of the training
process. We experimented the segmentation on four type of documents forming four
datasets listed in Tab. 3. The training took on average one hour on a Nvidia Titan X.
The training used data-augmentation such as slight rotations, flipping (left-right and
up-down) and color changing (hue, contrast and saturation). The combination of pre-
trained weights for encoding layers and aggressive data-augmentation diminishes the
number of training elements needed.

Dataset name Task
BNF-BCU Extract ornaments and illustrations in text documents (1 class)
ICDAR Extract line polygons and baselines in handwritten text documents (1 class)
CAD Extract parcels and text in venetian cadaster maps (2 classes, multilabel)

Table 3: Datasets and tasks evaluated in the experiments

2.2.3. Results

Tab.4 lists the number of training and testing documents for each task and the classifi-
cation accuracy (per-pixel), which is computed on the output of the softmax layer. The
task for CAD dataset is not evaluated because of lack of testing data (work in progress,
see Sec. 2.3). The examples of predictions shown in App. A are the probabilities output
by the system (before the softmax layer).

Dataset # doc. for training # doc. for testing Accuracy
BNF/BCU 50/342 0/85 0.989
ICDAR - line polygons 206 52 0.921
ICDAR - baselines 206 52 0.951

Table 4: Results for each task

This general system shows good results for several different tasks and has the advan-
tage of not needing large datasets to be trained. Even if some specific post-processing
should be done for each use case in order to obtain clean masks and precise extractions,
we believe this approach is sufficiently generic to be applied in a variety of documents
segmentation tasks with few annotated data.

The development of this tools has been done in collaboration with Benoit Seguin from
EPFL group.
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2.3. Cadaster maps processing

Based on the systems exposed in the previous sections, we improved the processing of
the cadaster maps proposed in annual report Y1. As a reminder, we developed a fully
automated process capable of segmenting and interpreting Napoleonic cadaster maps of
the Veneto region dating from the beginning of the 19th century. The system extracts
the geometry of the parcels, georeferences it if a coordinate reference system is provided
and reads the handwritten labels. This process has the objective of making the cadaster
maps searchable, allowing an easier, more efficient and more interactive study of these
documents.
First, the transcription system of the old version was replaced by the CRNN architecture
(see Fig. 3). The model was trained on numbers extracted from the venitian archives
(∼ 30K elements) and on synthetic data generated from MNIST digit dataset (100K
elements). On the test set the model has an accuracy of 0.956 and a CER of 0.013.
On the parcel’s numbers recognition task, the CRNN architecture greatly improves the
transcription, see the results in Tab 5.

Figure 3: Comparison between the previous (right) and the new (left) cadaster process-
ing system

Figure 4: Examples of numbers from the Venetian archives and artificially generated
from MNIST dataset

Number transcription CRNN 2 conv-layers
Recall 0.83 (608) 0.09 (66)
Character Error Rate (CER) 0.14 0.77
Ground truth (# parcels’ number) 736 736

Table 5: Results of the transcription using the old cadaster processing system with the
new transcription CRNN architecture and the old architecture (2 convolutional
layers)

Second, the segmentation steps of the previous system were replaced by the archi-
tecture presented in Sec 2.2. The network was trained on cadaster samples with its
corresponding labels mask (Fig. 5). As it can be seen in App. A, there are two proba-
bility maps output corresponding to the two classes. The possibility for a pixel to belong
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to both classes leads to better results when extracting the parcels’ shape and the text
regions.

Figure 5: Sample of cadaster image with its labels mask (text in green and parcels con-
tours in red). Note that a pixel may belong to both classes (yellow).

The evaluation of parcel’s extraction is compared to the previous system in Tab. 6.
We consider a parcel to be correctly extracted, if it has an IoU (Intersection over Union)
measure of at least 0.8 with the groundtruth (see example of groundtruth mask in Fig.
6). The recall is slightly better but the precision decreases. This is mainly due to the
fact that with the new system, we extract all the vectors/lines of the cadaster and some
post-processing would be necessary to discard non-parcel elements. These are prelimi-
nary results and we are currently working on this task.

Parcel extraction neural network old architecture
Recall 0.79 (941) 0.72 (583)
Precision 0.44 0.51
Ground truth (# parcels) 1185 810

Table 6: Results of the transcription using the old cadaster processing system with the
new transcription CRNN architecture and the old architecture (2 convolutional
layers)

With the new segmentation algorithm it is possible to directly export the contours as
a vector layer to be used in GIS systems (Fig. 7). When using georeferenced images, we
are able to superimpose the vectorized parcels from 1808 to an actual map as shown in
Fig. 8.

Regarding the full system with the updated segmentation and transcription modules,
it has already been implemented end-to-end. Current work focuses on improving the
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Figure 6: Annotated groundtruth for parcel extraction

Figure 7: Parcel extraction using pixel-wise segmentation to obtain polygonal vector
shapes

results of the transcription, by correcting the errors using contextual information from
neighbouring parcels but also by improving the localization of the number.

2.4. Misc. : Extension of NCSR Demokritos’ tools

We extended the tools developed by NCSR Demokritos partners (Binarization, TextLi-
neSegmentation, WordSegmentation and FromBaseLinesToPolylines tools) to allow their
testing within our workflow but also to make them available to python developers. This
work consisted in building a cython wrapper for the C++ code and resulted in an easy
and straightforward usage in python programming language. The python bindings can
be found on the original repository https://github.com/Transkribus/NCSR_Tools
(see the Readme_cython).
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Figure 8: View of the georeferenced parcels from 1808 Napoleonic cadaster on satellite
image of Venice. This image is a screenshot of an interactive visualization that
allows to display the transcription when a parcel is hovered or clicked

3. Work in progress

EPFL group is currently working on assembling the document segmentation system with
the transcription system in order to have a full workflow allowing a complete processing
from the image document to its transcription. We will also explore the possibility of a
single system trained end-to-end to perform both tasks.
Regarding the cadaster processing, future work will focus on adapting the digit extraction
steps to the new methods in order to achieve better number transcription. We plan to
use this tool to facilitate the study of spatial relations in the cadastral documents and
registers and possibly open new lines of research. We will also try to apply the system
to other types of cadasters in order to confirm the generality of the method.
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A. Examples

Figure 9: Transcription examples. GT is the groundtruth annotated by the Venetian
expert, P is the prediction of the system.
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Figure 10: Mask of probabilities output by the segmentation model for ornaments and
illustrations extraction on BNF/BCU dataset. The first row are images from
the BNF colection and the second row are images from the BCU collection.
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Figure 11: Mask of probabilities output by the segmentation model for line extraction
on ICDAR dataset. The first row are images from ICDAR testing set and
the second row are images from venetian archives.
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Figure 12: Mask of probabilities output by the segmentation model for text and parcel
extraction on CAD dataset.
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