
READ
H2020 Project 674943

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 674943

D7.11
Language Models

Improving transcriptions by external language
resources

Tobias Strauß, Max Weidemann, and Roger Labahn
URO

Distribution: http://read.transkribus.eu/

Project ref no. H2020 674943

Project acronym READ

Project full title Recognition and Enrichment of Archival Documents

Instrument H2020-EINFRA-2015-1

Thematic priority EINFRA-9-2015 - e-Infrastructures for virtual re-
search environments (VRE)

Start date/duration 01 January 2016 / 42 Months

Distribution Public

Contract. date of deliv-
ery

31.12.2017

Actual date of delivery December 6, 2017

Date of last update December 6, 2017

Deliverable number D7.11

Deliverable title Language Models

Type report

Status & version in process

Contributing WP(s) WP7

Responsible beneficiary URO

Other contributors

Internal reviewers ASV, UPVLC

Author(s) Tobias Strauß, Max Weidemann, and Roger Labahn

EC project officer Martin MAJEK

Keywords n-grams, language models

Contents

1 Introduction 4

2 Approaches 5
2.1 Dictionary . 5
2.2 Character n-Gram . 5
2.3 Neural character language model . 6

3 Tools 6
3.1 Preprocessing . 6
3.2 Beam search decoder . 7

4 Experiments 7
4.1 Data set . 7
4.2 Size of training corpus . 8

5 Conclusion and future work 9

D7.11 Language Models 3/ 10

Executive summary

While last year the language models were applied to modify textual transcriptions to find
and expand abbreviations (deliverable D7.10), this year we integrated language models
into the decoding process. Besides the recognition engine, URO implements also the
decoding of the neural network (compare deliverable D7.7). Thus, the direct integration
of language models by URO is more efficient / less work than for example for ASV. This
is also the reason why we moved the responsible beneficiary from ASV to URO.
First tests show a significant drop in the error rate.

1 Introduction

The key idea is to support the handwritten text recognition (HTR) system by external
domain knowledge about the language. For any position t of the text line image, the
neural network (as they are used in Transkribus) outputs a probability yt,c for any
learned character c and also for a garbage label called NaC (compare D7.7 Section
3.4). The networks probability of any sequence of such labels (characters and NaCs)
is simply the product of the individual probabilities at the specific positions. Thus,
the network provides a probability for any possible transcription of the specific text
line image. So-called language models (LM) estimate the probability of a specific word
w given a history of words w1, w2, . . . using external language resources1. Assuming
that these probabilities model the language of the current document well, we output
the transcription which maximizes a combination of the HTR probability and the LM
probability (as it was done in [Amodei et al., 2015], see Eq. (12)).

Task 7.4

The task is described in Grant Agreement: 674943 — Recognition and Enrichment of
Archival Documents (READ):

This task will research in different ways how to prepare linguistic resources
for the collections to be transcribed:

1. to use adaptation techniques for selecting the text from modern lin-
guistic resources more closely related with the documents that is being
transcribed;

2. to research how to obtain inflected forms of words for historical variants
of a given language;

3. to research how to deal with hyphenated words and

4. dealing with Out-of-Vocabulary (OOV) words (i.e., words that the HTR
engine has not seen during the training process).

1Language resources can be extracted from existing transcripts from XML, PDFs or DOCX. See D5.2
for further details.

D7.11 Language Models 4/ 10

In this task we will research how to deal with this problem by using character-
based language models. These models have to be combined efficiently with
the word-based language models in the HTR system.

2 Approaches

To enhance the transcription by external language resources, we implemented a dictio-
nary support in year 1 (see Subsection 2.1). In year 2, we implemented n-gram language
models (see 2.2) and started some research in neural language models (see Subsection
2.3).

2.1 Dictionary

Currently, external language resources are only used as dictionaries. Consider the net-
work output: If consecutive positions contain most likely letters, the true transcription
of these regions are probably words. We decode the most likely word from the dictionary
within such word region and return the most likely character (e.g, spaces, punctuations,
numbers etc.) of any other position. We also incorporate the relative frequencies of these
dictionary words if they are available (this corresponds to a 1-gram, see Subsection 2.2).
This method is fast, simple and needs only little training data. The drawback is that
this method is prone to segmentation errors. To satisfy the requirements of Task 7.4
(especially OOV words), we also accept the “raw reading” of the neural network, i.e.,
the most likely character sequence, besides the dictionary words. This is only reliable if
the character error rate is very low.

2.2 Character n-Gram

In statistical natural language processing, so-called n-grams (see [Manning et al., 1999])
are well-known and widely used. They make extensively use of the multiplication theo-
rem on probability: Given the sequence w1, w2, . . . , wN over some alphabet A, then

P(w1, . . . , wN) = P(w1)
N∏
i=2

P(wi | wi−1, . . . , w1) (1)

assuming a Markov property of order n

= P(w1) P(w2 | w1) . . .P(wn−1 | w1, . . . , wn−2)
N∏
i=n

P(wi | wi−1, . . . , wi−n+1).

(2)

Let c(w1, . . . , wk) denote the number of occurrences of the sequence w1, . . . , wk ∈ Ak in
an a-priori given text corpus. The n-grams model the conditional probabilities P(wi |
wi−1, . . . , wi−n+1) by counting the relative frequencies

P(wi | wi−1, . . . , wi−n+1) =

{
c(wi−n+1,...,wi)

c(wi−n+1,...,wi−1)
if c(wi−n+1, . . . , wi−1) 6= 0

0 otherwise
. (3)

D7.11 Language Models 5/ 10

Note that the alphabet is not limited to a character set. It may also consist of natural
words, syllables etc. such that w1, . . . , wN may be a sequence of characters or words,
equally. If not stated otherwise, we assume A as a character set since character n-grams
are able to handle inflections, hyphenations and OOV words as required by Task 7.4.

The classical n-grams as defined by Eq. (3) can model only frequencies of sequences
which appeared in the training corpus. Any other sequence gets zero probability al-
though many words in the sequence might equally be substituted by synonyms. A
sufficiently large training corpus which covers this problem is typically not available.
Several smoothing techniques were proposed to also assign non-zero probabilities to
unseen sequences (e.g., in [Kneser and Ney, 1995]).

We use Berkeley LM2 since it is easy to use, open source and optimized in running
time.

The advantages of n-grams are the well understood theory besides the fast training
(only counting frequencies). The drawbacks are that the n-grams tables can become
huge which slows down the lookup for great n. Furthermore, n-grams do not take the
word meaning into account.

2.3 Neural character language model

Neural networks can also be trained to model the probabilities of Eq. (1). Recurrent
neural networks model P(wi | wi−1, . . . , w1), directly. Thus, they can incorporate an
arbitrarily long context in theory which results in “around 18% reduction of word error
rate” in speech recognition experiments ([Mikolov et al., 2010]). However, the last i− 1
sequence elements serve as input to the neural network such that the number of possible
inputs grows exponentially in n. We avoid the problem of choosing the most promising
sequences per position for further exploration by again assuming the Markov property
such that the networks model P(wi | wi−1, . . . , wi−n+1).

We use a rather simple (feed forward) network architecture to stay efficient compared
to the n-grams: The input to the network is a learned character embedding followed by
a hidden layer with rectifier activation function and a softmax output layer.

This approach might model unseen character sequences better (see [Arisoy et al., 2012,
Bengio et al., 2003]) since the various articles show that networks are able to model
meanings of words (e.g., see [Mikolov et al., 2013]). So in principle, the neural network
can learn for example verbs and assign a high probability to an inflected form without
ever seen it. Drawbacks are a longer training time and a dependency of hyperparameters
such as network size, architecture, learning rate etc.

3 Tools

3.1 Preprocessing

To learn language models, textual resources have to be split into small atomic parts
from A such as characters, syllables or words. A tool which splits texts in such parts is

2https://code.google.com/archive/p/berkeleylm/

D7.11 Language Models 6/ 10

called Tokenizer. We implemented a Tokenizer3.
Our implementation relies on two main classes: The actual Tokenizer and a Catego-

rizer. The Tokenizer splits the character sequence at isolated characters and delimiter
classes. The Categorizer determines for a given character the category and properties
such as isolation and delimitation. Different tasks require different Categorizers: for ex-
ample, preparation of texts to train a character or word language model involve different
Categorizers.

3.2 Beam search decoder

The language models calculate the probability of a token wt given a history of tokens
wt−n+1, . . . , wt−1. To calculate the exact maximum, the probability of any possible his-
tory at any position has to be compared. The number of histories can be huge even for
small n. For example: For a language model with alphabet size even a 5-gram has 1005
(i.e., 10 billion) histories which have to be determined at each position. The typical way
to deal with that problem is to explore only the most promising sequences. For this
reason, we implemented a beam search decoder. This decoder is able to handle classical
n-grams as well as neural language models of both types: word and character language
models.

4 Experiments

4.1 Data set

The data set for the experiments was chosen from 800 pages of the Staatsarchiv des
Kantons Zürich4 collection. This set consist of Regierungsratsbeschlüsse, minutes of the
highest executive of the canton of Zürich (Switzerland).

The texts consists of resolutions and enactments of the cabinet (starting in 1848
"canton"). The first documents were written in 1803, the last in 1882. The script is
a very well-formed and highly trained German current. Different scribes wrote, from a
paleographic point of view they are quite similar but still distinguishable.

A subset of this collection was used for training the neural network: 4 pages per year,
i.e., 320 pages. For validation of the models two, separate validation sets (see Fig. 1)
were used:

val_a contains 1 page of every second year from the above mentioned 800 pages, i.e., in
total 40 pages.

val_b consists of 20 pages of minutes of the parliament of the state of Zurich from the year
1882 (Transkribus document id 13709). The writers are unknown to the neural
network.

3See D5.2 for details. The code is available at https://github.com/Transkribus/
TranskribusTokenizer.

4The Staatsarchiv Zürich is a large scale demonstrator of the READ project.

D7.11 Language Models 7/ 10

a) sample from val_a

b) sample from val_b

Figure 1: Sample lines from the two different validation sets.

Table 1: Error rates for val_b. The n-grams and the neural LM take the shown minimum
CER at n = 13, 12 and 12, respectively.

raw reading word 1-gram “big” n-gram “small” n-gram neural LM

CER in % 22.8 20.4 17.7 18.4 18.6
n - - 13 12 12

4.2 Size of training corpus

Setup We used two corpora: a “big” corpus consisting of 2598 randomly selected para-
graphs from the whole collection (504821 words, 3679928 characters, no texts from the
validation pages included) was used to learn character n-grams (referred to as “big” n-
grams, see Subsection 2.2) and (feed forward) neural language models (see Subsection
2.3) with n ranging from 3 to 13.
A “small” corpus consisting only of the 320 training pages (60548 words, 429743 char-

acters) was used to train “small” n-grams. The dictionary for the word unigram (see
Subsection 2.1) is created also from the small corpus.

The error measure is the character error rate (CER).

Results Figure 2 shows the results on the val_a set. The raw reading resulting directly
from the neural network yields 14,9% CER. The currently implemented dictionary / word
1-gram method already decreases the error to 12,3% with the standard hyperparameters
as used in Transkribus. For greater n, the grams and neural LMs yield far better error
rates. The “big” n-gram even decreases the error below 8,8% (n = 10). The “small” n-
gram yields 9.3% (any n from 8 to 13) and the neural LM 9,7% (n = 10). Surprisingly,
the decoding time with Berkley LM on val_a increased significantly from 33 min (n = 3)
to 123 min (n = 13). The decoding time with the neural LMs on the same data increased
from 43 min (n = 3) to 77 min (n = 13).

The results on the validation set val_b (see Table 1) are similar although the relative
CER drop is not that spectacular. Also here, the n-gram models beat the other methods.

D7.11 Language Models 8/ 10

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

4 6 8 10 12

ch
ar
ac
te
r
er
ro
r
ra
te

n

raw reading
word 1-gram
neural LM

n-gram small
n-gram big

Figure 2: Error rates on validation set val_a for various language models.

Discussion The data from val_a clearly fits to the training data of both: the network
and the language model. Thus, the good results are not surprising. But the general
statements transfer also to data which do not fit directly to the training data as the
results on val_b show. Currently, the n-gram models seem to be the method of choice.
They are easy and fast to train and yield the best error rates in both experiments.
Unfortunately, we could not confirm the abstraction capabilities of neural LMs reported
in the literature. Either the architecture is too simple or these properties only hold for
word LMs where a specific sequence is much more unlikely since there are much more
words than characters.

5 Conclusion and future work

We showed that language models yield a huge performance boost. The CER on the
validation set val_a was decreased from 14.9% to 9.3 % by using only the training data
and even further if other external language resources are integrated. The generation of
such language models is simple and will be implemented in year three into Transkribus.
In year three, a comparison to word language models has to be done for sake of

completeness. We also plan to be investigate better neural language models to reproduce
results from the literature.

D7.11 Language Models 9/ 10

References

[Amodei et al., 2015] Amodei, D., Anubhai, R., Battenberg, E., Carl, C., Casper, J.,
Catanzaro, B., Chen, J., Chrzanowski, M., Coates, A., Diamos, G., Elsen, E., Engel,
J., Fan, L., Fougner, C., Han, T., Hannun, A., Jun, B., LeGresley, P., Lin, L., Narang,
S., Ng, A., Ozair, S., Prenger, R., Raiman, J., Satheesh, S., Seetapun, D., Sengupta,
S., Wang, Y., Wang, Z., Wang, C., Xiao, B., Yogatama, D., Zhan, J., and Zhu, Z.
(2015). Deep-speech 2: End-to-end speech recognition in English and Mandarin. Jmlr
W&Cp, 48:28.

[Arisoy et al., 2012] Arisoy, E., Sainath, T. N., Kingsbury, B., and Ramabhadran, B.
(2012). Deep neural network language models. In Proceedings of the NAACL-HLT
2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of
Language Modeling for HLT, pages 20–28. Association for Computational Linguistics.

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003).
A neural probabilistic language model. Journal of machine learning research,
3(Feb):1137–1155.

[Kneser and Ney, 1995] Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram
language modeling. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95.,
1995 International Conference on, volume 1, pages 181–184. IEEE.

[Manning et al., 1999] Manning, C. D., Schütze, H., et al. (1999). Foundations of sta-
tistical natural language processing, volume 999. MIT Press.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

[Mikolov et al., 2010] Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khu-
danpur, S. (2010). Recurrent neural network based language model. In Interspeech,
volume 2, page 3.

D7.11 Language Models 10/ 10

