

Recognition and Enrichment of Archival
Documents

D6.14.
Document Understanding Tools P2

Hervé Déjean, Jean-Luc Meunier, Stéphane Clinchant
Naver Labs Europe

Distribution:

http://read.transkribus.eu/

READ
H2020 Project 674943

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 674943

D6.14 DU tools 31th December, 2017 2/20

Project ref no. H2020 674943

Project acronym READ

Project full title Recognition and Enrichment of Archival Documents

Instrument H2020-EINFRA-2015-1

Thematic Priority EINFRA-9-2015 - e-Infrastructures for virtual research environments (VRE)

Start date / duration 01 January 2016 / 42 Months

Distribution Public

Contractual date of delivery 31/12/2017

Actual date of delivery

Date of last update 21/12/2017

Deliverable number 6.14

Deliverable title Document Understanding Tools P2

Type Demonstrator

Status & version 4.3

Contributing WP(s) WP5, WP6, WP7, WP8

Responsible beneficiary NLE

Other contributors

Internal reviewers ASV, UIBK

Author(s) Hervé Déjean, Jean-Luc Meunier, Stéphane Clinchant

EC project officer Martin Majek

Keywords Document Understanding, Workflow, Conditional Random Fields, Pattern Mining

D6.14 DU tools 31th December, 2017 3/20

Contents
Executive Summary ... 4

1. Introduction .. 4

2. TranskribusPyClient ... 5

2.1. Overview .. 5

2.2. Year 2 improvements ... 5

3. TranskribusDU ... 6

3.1. Overview .. 6

3.2. Conditional Random Field component .. 6

3.3. Graph Convolutional Network ... 9

3.4. Sequential Pattern Mining .. 9

3.5. Table Understanding .. 10

3.6. Information Extraction Component ... 12

4. Use Cases ... 13

4.1. General Document Understanding ... 13

4.2. Information Extraction from Table (ABP collection) .. 14

4.3. Use Case: BAR collection ... 15

5. Resources: .. 17

5.1. Software Repositories .. 17

5.2. Related documentation under WIKI: ... 17

5.3. Data under Transkribus .. 17

6. References .. 18

11. Code .. 18

Annex 1: Transkribus Python API ... 19

D6.14 DU tools 31th December, 2017 4/20

Executive Summary

This document presents the work done during the second year for the Document Understanding

(DU) work package. TrankribusPyClient, the Python RESTful client has been updated to reflect

changes in the RESTful API and extended in order to support collection and workflow design

and management. TranskribusDU, the Document Understanding package per se, has been

improved, enriched with new components (Information Extraction and Graph Convolutional

Networks), and evaluated against several use cases.

Two main use-cases have been addressed: the ABP use case, focusing on Information

Extraction from tables, and the BAR use case, focusing on Document format conversion. A

first milestone has been reached in processing collections of tens of thousands of pages.

The toolkit is built upon open-source software and available on the Transkribus GitHub

repository. The READ wiki pages are constantly updated with last developments. See

references Section 6.

1. Introduction

Year 2 was dedicated to improve the existing Document Understanding components and to

design workflows for specific use-cases. Figure 1 shows how the TranskribusPyClient and

TranskribusDU components interact with the Transkribus platform in order to design a DU

workflow.

Section 1 will briefly present the improvements and new developments done for the

TranskribusPyClient. Section 2 will present the new Machine Learning components. Then Use

cases will be presented, as well as their workflow, and some evaluation.

The reader will find links to the READ Wiki pages which contain more detailed information,

as well as in [1].

Figure 1: : Interactions between the Transkribus components.

D6.14 DU tools 31th December, 2017 5/20

2. TranskribusPyClient

2.1. Overview

TranskribusPyClient is a Python module allowing you to interact with the Transkribus platform

through its RESTful interface [2]. Beyond the wrapping of the services offered by the

Transkribus RESTfull API, a strong need appeared for some functionalities which would be too

tedious through the Transkribus User Interface such as: having an efficient transcripts version

management, or automate as much as possible some Machine Learning operations (such as full

training configuration with parameter tuning.). With these new commands, full workflow can

now be designed for most use cases (combined with TranskribusDU components).

2.2. Year 2 improvements

Here is the list of new or updated functionalities offered by PyClient. Please see the READ

Wiki for the full list (or see Annex 1).

1. Managing transcripts of a document

In Transkribus, a document contains a sequence of pages, and each page contains a sequence

of transcripts for versioning purpose. Modifying anything on a page, either manually or

programmatically, and saving leads to the creation of a new transcript. Managing tens of

transcripts for hundreds of pages is a typical order of magnitude, so we propose a new service

to manage the mass of transcripts of a document. Essentially, the service selects the transcripts

based on some criteria. After selection, some check can be specified, and finally an operation

can be performed. For the time being, the criteria are date, time, user and status. The operation

is one of list, removal, status update. See the corresponding READ Wiki page for more details.

This service is clearly of use to any tech-savvy practitioner. It can also help informing the design

of an equivalent function in the Transkribus GUI

2. Transkribus_uploader

In relation with the previous service for transcript management, we have adapted the download

and upload services, so that they can work on a sub-set of transcripts of a document, which

were selected by the previous service. This is of use when for instance a subset of the pages

was manually annotated to train some DU model, which is then applied on the rest of the

document. There is then the need to download and upload subsets of transcripts, based on their

annotation state. See this READ Wiki page, in particular the –trp option.

3. New Layout Analysis

This command allows one to perform text lines detection on a set of documents (using URO

baseline finder).See this READ Wiki page.

4. Train an HTR model

With this command, the training and test sets can be specified easily and several training jobs

can be launched at once, with various values for the main parameters (number of epochs,

learning rate, batch size). This allows us to quickly perform a grid-search for selecting the best

parameter values for a training set. See this READ Wiki page. See also deliverable D.4.5,

Section 3.2

https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Managing_transcripts_of_a_document
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Transkribus_downloader
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#analyze_the_Layout_New_.28URO_baseline_Finder.29
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Train_an_HTR_RNN_Model

D6.14 DU tools 31th December, 2017 6/20

5. Apply an HTR model

This command allows us to select an existing HTR model, a dictionary, and to apply the HTR

recognition at document, page or region level. The RESTful API allows us to also perform

some recognition as region level with a specific dictionary. This new API extension will be

tested with the Table use-case where columns correspond to specific data (names, location,

etc.). See this READ Wiki page.

6. Upload specific dictionary

This allows you to upload specific dictionaries, which can be used with the new HTR service

at region level (see above). See this READ Wiki page.

3. TranskribusDU

3.1. Overview

TranskribusDU is a Python library allowing you to perform some Document Understanding

tasks. It allows you to build your own workflow in Python by easily combining layout analysis

tools, TranskribusDU tools and your Python tools. For image processing and Layout Analysis,

we rely on the tools available through the Transkribus RESTful API.

In the READ project, two main technologies for Document Understanding are used: a

supervised Machine Learning component based on Conditional Random Fields (CRF) or

Graphical Convolution Networks (GCN) and a mining (unsupervised) component based on

Sequential Pattern Mining (SPM).

In the remaining, we model each page as a graph, where each node reflects one text line (see

Figure 2). An edge in the graph reflects a neighbouring relationship between two text lines,

possibly long distance ones. More precisely, whenever there is horizontal, respectively vertical,

significant and direct overlap between two bounding boxes of two text lines, we create a

vertical, respectively horizontal, edge. ‘Significant’ means that the overlap must be higher than

a certain threshold. ‘Direct’ means that the two bounding boxes must be in line of sight of each

other, i.e. without any obstructing block in between.

Figure 2: The neighbours of the red-filled block are in blue and are linked to it. Grey strikethrough blocks are not in

its neighbourhood.

This particular structure is arbitrary but based on the intuition that neighbouring relations are

playing an important role. We have also experimented with acyclic structures based on

minimum spanning tree but we observed a degradation of performance.

3.2. Conditional Random Field component

During the first year of the project, we chose to experiment with a structured machine learning

approach and implemented it as a Conditional Random Field (CRF) model, where a (mostly

https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#apply_an_HTR_RNN_Model
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#upload_private_.27temp.27_dictionaries

D6.14 DU tools 31th December, 2017 7/20

always) cyclic graph reflects the objects laid out on a page, or on the pages of a document.

During the second year, we pursued this CRF approach further and made progress along three

lines:

1. Extending the CRF model itself to a multitype CRF model;

2. Extending the single- and multi-type CRF models to support logical constraints;

3. Making practical improvements to TranskribusDU tool to better support use cases.

We detail below each line of work.

1. Multitype CRF

We have been using CRF to jointly classify all the objects of a page, or of a document, and we

observed that joint classification was valuable (compared to separately classifying each object).

However, this approach requires object homogeneity, i.e. all objects share the same set of

classes, or labels. This is a limitation when considering that the “objects” laid out on a page of

a document are of several types, e.g. textual, graphical.... Indeed, each type of object has a

specific set of labels, e.g. heading, marginalia… for textual objects, and picture, separator

line…, for graphical objects. They do not share the same set of classes. Finally, when it comes

to interpreting the role of the objects on a page, we believe one has to consider all types of

objects, in a joint manner because they generally depend on each other, e.g. the position of a

caption text relates to the position of its corresponding image. This is why we looked after a

method able to jointly classify heterogeneous objects. We therefore extended the PyStruct

CRF library to perform structured machine learning on typed CRF graphs, i.e. a graph where

each node is associated with a type that determines its label space. Generalizing from the

conventional CRF model, there is one distinct unary potential function per type, and one distinct

pairwise potential function per pair of types. Learning and inference can then be adapted to this

new setting as explained in [3].

This CRF extension required extending both the PyStruct CRF library and the AD3 inference

library. The extensions are respectively available from https://github.com/jlmeunier/pystruct

and https://github.com/jlmeunier/AD3 . In a second publication [1], we gave a more practical

view of the new CRF library. The respective owners of the original libraries showed interest in

our pull requests. Some work is required from all parties in order to merge those codes

(ongoing).

Title?

Header?

Page Number?

…

Figure?
Image?

…

Figure 3: One example of multi-type CRF graph

https://github.com/jlmeunier/pystruct
https://github.com/jlmeunier/AD3

D6.14 DU tools 31th December, 2017 8/20

2. Logical Constraints in (single- or multi-type) CRF

While adapting the AD3 Python API to support multi-type CRF, we also extended this API to

support logical constraint during inference. Indeed, AD3 natively supports logical constraints

on binary graphs and CRF graphs can be binarised as explained in [4Error! Reference source

not found.]. We then also extended the binarisation procedure to multi-type CRF as explained

in [3].

In turn, it is possible to express certain logical constraint on the labels of the nodes of the graphs.

For instance, if one a priori knows that there is at most one page-number per page, this

knowledge can be encoded as a AT_MOST_ONE logical constraint over all page number labels

of all nodes of the sub-graph of objects corresponding to the page.

3. Extending the TranskribusDU Tool

In the course of our experiments with use cases, we incrementally added relevant features to

our DU tool:

 Computing statistics for an annotated collection: number of pages per document,

distribution of labelled objects per document, distribution over documents per labelled

object, distribution of label per labelled object. Those statistics help the user, or

developer, to assess the coverage and balance of the annotation of a collection.

See in READ Wiki.

 Cross-validation and parameter tuning: the DU tool is able to perform all steps of a

cross-validation experiment from partitioning the data to computing performance

statistics and comparing to some baseline standard methods.

See in READ Wiki.

 Visualizing the CRF model convergence and warm-starting a training.

See in READ Wiki.

Title Title Title

XOR

TitleMarker

IMPLY

Figure 1 - Using logical constraint to express a priori knowledge Figure 4: Using logical constraint to express a priori knowledge

https://read02.uibk.ac.at/wiki/index.php/Document_Understanding_BAR#Annotation_Statistics
https://read02.uibk.ac.at/wiki/index.php/Document_Understanding_BAR#Semantic_DU_Task_Alone
https://read02.uibk.ac.at/wiki/index.php/Document_Understanding_BAR#Model_Convergence

D6.14 DU tools 31th December, 2017 9/20

3.3. Graph Convolutional Network

Graph Convolutional Networks (GCNs) [5] have been proposed recently for classifying nodes

in a graph. The underlying idea is to use the node adjacency matrix as ‘convolution’ (see Section

3.1 which explains how the graph is built). Although GCNs are standard feed-forward networks,

there is one noticeable difference to standard networks which process elements independently

from each other: GCNs operate on all the nodes of the graph at the same time and therefore

introduce implicitly some dependencies among the predictions for unlabelled nodes. We tested

this new Machine Learning approach and compared it to our CRF method. While results of

both methods are comparable, one main advantage of the neural network approach we foresee

over the CRF approach, beyond using mainstream technology, is the capacity to easily scale up

regarding the training set size. The architecture used is described in [6], as well as the

comparison with CRF for the ABP Table Information Extraction use case.

3.4. Sequential Pattern Mining

For the second year, no major improvement can be reported, but we performed some

comprehensive evaluation of the use of Sequential Pattern Mining component for finding the

layout and reading order in a multi-page, multi-column document. A collection of 30 different

books was selected (provided by ABP) for evaluation. After having applied layout analysis

tools at the page level, a sequential pattern mining algorithm is applied at the document level

in order to identify the layout templates used in the document. In this experiment the goal was

to identify the vertical structures (column and margins vertical boundaries). Then these

templates will be used in order to correct errors done by the LA tools used at page level. Figure

5 shows an example of corrected page.

Figure 5: Initial lines and regions (green; left image), and corrected regions (blue, right). Text part of the left page are

also excluded.

Table 1 shows the evaluation for the 30 books (first 30 pages considered)

D6.14 DU tools 31th December, 2017 10/20

Table 1: Evaluation of the column vertical boundaries with the SPM method.

 Our Method

Doc# Precision Recall F1

1 97.7 80.6 88.3

2 91.7 91.7 91.7
3 98.6 100 99.3

4 100 100 100
5 100 100 100

6 83 82.1 82.5
7 100 100 100
8 100 93.5 96.7

9 100 93.5 96.7
10 100 100 100

11 96.6 71.3 82.1
12 85 24.8 38.3
13 61.3 100 76

14 100 100 100
15 66.7 78.4 72

16 100 100 100
17 75 70.8 72.8
18 100 66.7 80

19 100 33.3 50
20 94.3 98.8 96.5

21 86 87.5 86.7
22 91.9 87.7 89.8
23 96.7 75 84.5

24 96.7 100 98.3
25 100 100 100

26 81.7 43.8 57
27 100 100 100
28 100 30.5 46.8

29 100 66.7 80
30 100 75 85.7

Micro 91.4 72.5 80.8

This component is used in the BAR use-case in order to build the reading order of the documents

(mirrored left-right pages with marginalia) and correct some text lines (no line break between

the marginalia and the main body). We also foresee to use this component in order to

automatically build table templates for a document, and use the CVL table matching tool to

compute the table structure (especially for noisy pages).

3.5. Table Understanding

Tables are an important document object. A set of components has been designed to analyse

table structures. We rely on the table template tool designed by CVL (see [7]) for column

recognition. For table row detection, our approach has been to use Machine Learning. The way

we formulate the row detection problem is as follows: Once the columns and the text lines have

been identified, each text line will be tagged with one of the following categories: B, I, E, S, O,

which correspond of the following situation:

D6.14 DU tools 31th December, 2017 11/20

Table 2: Explanation of the BIESO labels used for table row segmentation.

Category Explanation

B(eginning) First line of a cell

I(nside) Line inside a cell (except first and last)

E(nd) Last line of a cell

S(ingleton) Single line of the cell

O(utside) Outside a table

This BIESO pattern is borrowed from the Natural Language Processing domain, where it is

used to recognize entities (sequence of words) in a sentence. Our assumption is that, once

properly categorized, it will be easy to finally segment into rows. Figure 6 shows some output

of the categorization. Evaluation shows that both CRF and GCN perform very well on our

dataset.

Table 3: Accuracy of CRF and GCN for the BIEOS row detection task.

Method Fold 1 Fold 2 Fold 3 Fold4 Average

CRF 0.938 0.908 0.91 0.865 0.906

GCN 0.945 0.92 0.90 0.89 0.915

Figure 6. Example of Row detection using the BIEOS model. Orange: Begin of a cell, green: Inside a cell; grey: end of

cell.

A full description of this experiment can be found in [6]

D6.14 DU tools 31th December, 2017 12/20

3.6. Information Extraction Component

A new component has been added to the TranskribusDU package in order to address Textual

Information Extraction (hereafter IE) from table. IE, in our context, aims at tagging some

textual elements organized in table cells. In our main use case (see Section 4.2), a record (table

row) corresponds to an entry in a death book (first name, last name, family status, location,

death date, occupation, death reason, …). A cell can contain various information (death date

and location, names and row number for instance), so each word in a cell has to be correctly

tagged. Figure 1Figure 7 shows some complex situations where fine tagging is required.

(a)

(b)

(c)

Figure 7. (a) shows the table header and the first two rows corresponding to a record. (b) the name field with a

numbering information (second and third item for the given year). (c) The death date field is structured (date and

hour), while only the month day and month fit the database schema, and have to be extracted.

In order to tackle this problem, we chose to use a Machine Learning approach: we trained a

tagger in order to recognize each field of a record. In order to build the training set, one solution

could have been to annotate some pages of the collection. Instead, the solution we chose was to

generate a synthetic training set: ABP has already a database with thousands on (partial) entries.

The idea is to use these entries (as dictionary) in order to generate a training set. A component

was designed to take as entry the dictionaries extracted from the database (one dictionary per

record field), or to simply generate small dictionaries for the fields were the values are small

and closed (family status). We rely on some Python packages to generate the date fields. Below

is an example of training example:

Table 4: Example of synthetic training set. Each word is associated with its label.

Word Tag

Lambert firstName

Stadler lastName

D6.14 DU tools 31th December, 2017 13/20

Obersatzbach Location

FlQ textNoise

Brustwassersucht Deathreason

48 ageValue

Jahre ageUnit

ledig familyStatus

5 weekDayDate

30 monthDayDate

Jul monthDate

Gütler profession

Some artificial elements such as noisy text are also generated in order to simulate the possible

(probable!) noisy HTR outputs. A more sophisticated labelling system is also used for taking

into account multi word elements such as composed first names (Eva Maria), using the BIES

labelling. Hyphenation is also taken into account in the generation. We foresee this approach

as being generalizable to other use cases (all civil and census records laid out with table

whatever the language).

Then our Machine Learning component (based on BiLSTM) can be trained using this synthetic

training set. Sections 4.2 explains the full workflow for this use case.

4. Use Cases

We now present the main use cases which were addressed during Year 2. For each of them, a

workflow was designed using the Transkribus platform (for layout analysis, HTR model

training, HTR), TranskribusPyClient (interaction with the platform), TranskribusDU

(document objects categorization, information extraction), and the table matching tool (CVL)

locally installed.

4.1. General Document Understanding

This use case aims at designing a general Document Understanding model targeting ‘generic’

document elements such as heading, page headers, paragraph, caption, … The collection is

large and is constituted by 164 books (printed characters), and OCRed with Abbyy FineReader.

Several languages are present, often German, but also some in Cyrillic characters. Applying

our Conditional Random Field approach, we are able to achieve an overall F1-score of 0.91.

Experiments using GCN should be conducted in the future. The next table shows the results for

each category.

 Precision Recall F1-score Support

 gtb_TOC-entry 0.85 0.75 0.80 4145

 gtb_caption 0.27 0.36 0.31 398

 gtb_catch-word 0.00 0.00 0.00 188

D6.14 DU tools 31th December, 2017 14/20

 gtb_footer 0.00 0.00 0.00 10

 gtb_footnote 0.83 0.82 0.83 29279

gtb_footnote-continued 0.27 0.25 0.26 1374

 gtb_header 0.96 0.98 0.97 10822

 gtb_heading 0.79 0.76 0.78 14493

 gtb_marginalia 0.93 0.96 0.94 6134

 gtb_page-number 0.98 0.98 0.98 28976

 gtb_paragraph 0.94 0.94 0.94 136075

 gtb_signature-mark 0.81 0.93 0.86 3689

 avg / total 0.91 0.91 0.91 235583

This use-case clearly shows that some general DU model can be learnd. The next challenge is

to adapt this model to a specific collection. In the framework of CRF or Deep learning, this

generic model trained on a large collection could be used for initialisation, and some small

training data could be provided before performing some additional training steps.

More details about this dataset and the evaluation can be found on the READ wiki.

4.2. Information Extraction from Table (ABP collection)

This use case illustrates an Information Extraction workflow for tables. ABP provided us with

a collection of death records from the 19th century in German (see WP 8.11, Section 2 [7]).

They also have some partial extracted data stored in their database for this collection which

allows us to perform some large scale evaluation for some record fields (first name, last name,

occupation, location). The workflow uses several components from various partners:

1. Design of the table template (TranskribusX GUI, UIBK)

2. Layout Analysis (RESTful service, URO)

3. HTR (RESTful, URO)

4. Table Matching (locally installed, CVL)

5. Row Detection (TranskribusDU, NLE)

6. Information Extraction (TranskribusDU, NLE)

The first step is to design table templates associated to the collection. 11 main templates were

identified by ABP. Once the templates have been designed, text lines (baselines) are identified.

Then the table matching tool associates to each page the correct template. The outcome of this

step is that the table region is found as well as the column regions. From this, the table row

detection is performed (see Section 3.5). Then the table is fully structured into rows, columns,

and cells. The Information Extraction tool is applied to each page, extracts and stores the data

into an XML file. Below is an excerpt of output for a given record.

 <PAGE number="151" nbrecords="10">

 …

 < RECORD lastname="Gerlesberger"
firstname="Anna"

occupation="Warthstöchterlin"

location="Kirchberg"

situation="Kind"

deathreason="Halsentzündung"

deathDate="Nov"

https://read02.uibk.ac.at/wiki/index.php/Document_Understanding_GTBook

D6.14 DU tools 31th December, 2017 15/20

burialDate="Nov"/>

…

 </PAGE>

A first evaluation has been performed with a 151-page document (collection 5400, document

27734), corresponding to approx. 1,500 records. The evaluation is performed as follows: we

only considered records for which a last name and a first name field are extracted. Then these

names are concatenated (first name + last names) and compared to the names in the database

entry. An edit distance is used in order to add some fuzzy matching. Several fuzziness values

are tested

The current observations we can draw from this small test are as follows:

 Row detection works well, an evaluation on 150 pages from 15 documents shows an

accuracy of 90%

 HTR should be improved (new training data will be available). Secondly, the new

regions-level HTR, combined with proper dictionaries should increase the HTR quality

as well.

 IE tool is currently able to filter out very bad HTR text, and has to be improved regarding

some minor points (doctor/nurse is not identified in the death reasons column)

Edit distance Precision Recall F-1

TH=100 37.5 24.7 29.8

TH=80 60.6 40.0 48.2

TH=75 67.1 44.3 53.4

TH=66 76.1 50.2 60.5

Overall, very encouraging outcome compared to last year. We should be able to show some

results for the full 26,000-page collection during the second review.

4.3. Use Case: BAR collection

This use-case aims at recognising the so-called “resolutions” from the 19th century minutes of

the Swiss Federal Council at the Swiss Federal Archives, Berne (BAR). This is a joint work

with the State Archives of Canton of Zurich [8].

This task is twofold as it involves semantic labelling of the resolution constituents as well as

segmenting the document into a series of resolutions, as illustrated on figure 2 below.

We will here only mention the salient aspects of this work and shall refer the reader to the

READ Wiki for full details.

https://read02.uibk.ac.at/wiki/index.php/Document_Understanding_BAR

D6.14 DU tools 31th December, 2017 16/20

2 - a page of the 19th century minutes of the Swiss Federal Council

We jointly designed annotation guidelines and manually selected and annotated 100 pages. We

then ran our DU tool for the two tasks, having turned the segmentation task in a labelling task

(with the labels Begin, Inside, End). The final output of the task must correspond to a structured

file (such as TEI), similar to this example:

<body>

 <div type=„volume“ from=„1903-01-01“ to=„1903-03-31">

 <head>Protokoll über die Verhandlungen des Schweizerischen Bundesrates

1903</head>

 <div n="1" type=„minutes“>

 <head>Präsidial-Verfügungen vom 1. Januar 1883</head>
 <div n=„1.1" type=„departement“>
 <head>Politisches Departement […]</head>
 <div xml:id=„resolution-YYYY-1" n=„1.1.1" type=„resolution“>

 <head>Minister Kern, Urlaub und Stellvertretung</head>

 <p>Mit […] vom 30. Dezember […] </p>

 </div>

 <div xml:id=„resolution[…]“ n="1.2" type=„resolution"> ……

 </div>

 </div>

 </div>

</div>

</body>

This was one opportunity for comparing a joint classification using the multi-type CRF with

two separate CRF-based classifiers (one for the semantic labelling, one for the segmentation

labelling). The joint classification is reminiscent of the Factorial CRF model of McCallum et

https://read02.uibk.ac.at/wiki/images/f/f4/DU_BAR_2017-07_Annotation_Guidelines.pdf

D6.14 DU tools 31th December, 2017 17/20

all [10Error! Reference source not found.] as each object has a dual type. We report below

our findings.

Accuracy Semantic

labelling

Segmentation

labelling

Semantic alone 85% N/A

Segmentation alone N/A 59%

Joint classification semantic + segmentation 88% 66%

Those results show the interest of joint classification. We expect the accuracy to get a boost

from using the text of the document, once an HTR is available.

We performed 7 steps of the workflow we defined and intend to complete this work next year,

when the HTR and layout READ tools will be more mature. In particular, we will then be able

to report on the performance using a task-oriented metric.

5. Resources:

5.1. Software Repositories

TranskribusPyClient: https://github.com/Transkribus/TranskribusPyClient, A Pythonic API and
some command line tools to access the Transkribus server via its REST API

Transkribus DU toolkit: https://github.com/Transkribus/TranskribusDU, Document
Understanding tools

 crf: (graph-CRF; Approach 1): core ML components for training and applying CRF
models

 spm: (Sequential Pattern Mining; Approach 2): core components for mining
documents

 use-cases: examples of end-to-end workflows (current more toy examples)
o StaZH
o ABP

5.2. Related documentation under WIKI:

The READ wiki page is constantly updated with last developments.

https://read02.uibk.ac.at/wiki/index.php/Document_Understanding : main page entry for DU
activities

https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API: page describing the
Python REST API (see also annex 1)

5.3. Data under Transkribus

Ask permission to access these collections (contact us)

https://read02.uibk.ac.at/wiki/index.php/Document_Understanding_BAR#Workflow
https://github.com/Transkribus/TranskribusPyClient
https://github.com/Transkribus/TranskribusDU
https://read02.uibk.ac.at/wiki/index.php/Document_Understanding
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API

D6.14 DU tools 31th December, 2017 18/20

 READDU (collection ID: 3571). StaZH documents annotated with logical labels

 BAR_DU_testcollection (collection 7018). BAR annotated collection (Section 4.3)

 DAS2018 (collection ID 9142). ABP dataset for table (Section 4.2)

6. References

1. J.-L. Meunier, H. Déjean : “Transkribus Python Toolkit”. ICDAR-OST, Kyoto, Japan, 10

- 12 November 2017

2. https://transkribus.eu/wiki/index.php/REST_Interface

3. J.-L. Meunier, “Joint Structured Learning and Prediction under Logical Constraints in

Conditional Random Fields”, CAp 2017

4. Martins, A. F., Figueiredo, M. A., Aguiar, P. M., Smith, N. A., Xing, E. P. “AD3:

alternating directions dual decomposition for MAP inference in graphical models”, JMLR

2015.

5. T.N. Kipf, M. Welling: Semi-Supervised Classification with Graph Convolutional

Networks. CoRR abs/1609.02907, 2016.

6. S. Clinchant, H. Déjean, J.-L. Meunier, Eva Maria Lang, Florain Kleber, Comparing

Machine Learning Approaches for Table Recognition in Historical Register Books,

submitted.

7. Deliverable 6.8; Table and form analysis tool P2 (CVL)

8. Deliverable 8.11 ; Large Scale Demonstrators. Keyword Spotting in Registry Books P2

(ABP)

9. Deliverable 8.5; Evaluation and Bootstrapping P2 (StAZH)

10. Lafferty, J., McCallum, A., Pereira, F. “Conditional random fields: Probabilistic models

for segmenting and labeling sequence data”, ICML 2001

11. Code

TranskribusPyClient: https://github.com/Transkribus/TranskribusPyClient

TranskribusDU : https://github.com/Transkribus/TranskribusDU

CRF : https://github.com/Transkribus/TranskribusDU/tree/master/src/crf

SPM : https://github.com/Transkribus/TranskribusDU/tree/master/src/spm

GCN: https://github.com/Transkribus/TranskribusDU/tree/master/src/gcn

Row Detection : https://github.com/Transkribus/TranskribusDU/tree/master/src/tasks

Information Extraction :

https://github.com/Transkribus/TranskribusDU/tree/master/usecases/ABP/src

https://transkribus.eu/wiki/index.php/REST_Interface
http://dblp.uni-trier.de/db/journals/corr/corr1609.html#KipfW16
https://read02.uibk.ac.at/wiki/images/d/d0/D6.8.pdf
https://read02.uibk.ac.at/wiki/index.php/File:READ_D8_11_LSD_Passau.docx
https://read02.uibk.ac.at/wiki/images/3/35/READ_8.5-StAZH-v1.pdf
https://github.com/Transkribus/TranskribusPyClient
https://github.com/Transkribus/TranskribusDU
https://github.com/Transkribus/TranskribusDU/tree/master/src/crf
https://github.com/Transkribus/TranskribusDU/tree/master/src/spm
https://github.com/Transkribus/TranskribusDU/tree/master/src/gcn
https://github.com/Transkribus/TranskribusDU/tree/master/src/tasks
https://github.com/Transkribus/TranskribusDU/tree/master/usecases/ABP/src

D6.14 DU tools 31th December, 2017 19/20

Annex 1: Transkribus Python API

From READ Wiki: Transkribus Python API ; date: 22/11/2017

(We recommend you to click on the link to access an update version; new items are in bold)

 1 Reference Documents:

 2 Code

o 2.1 Note on the proxy settings

o 2.2 on Transkribus Login

 3 Command Line Utilities

o 3.1 Persistent login

o 3.2 Collections

 3.2.1 Add Document(s) to Collection

 3.2.2 Duplicate Document(s) from Collection to Collection

 3.2.3 Create a Collection

 3.2.4 Delete a Collection

 3.2.5 List a Collection

 3.2.6 Managing transcripts of a document

 3.2.6.1 Filtering the last transcript of each page

 3.2.6.2 Filtering based on Page Numbers

 3.2.6.3 Filtering based on Dates

 3.2.6.4 Filtering or Checking based on Status

 3.2.6.5 Filtering or Checking based on User

 3.2.6.6 Generating a TRP file

 3.2.6.7 Operation

 3.2.6.8 Usage

 3.2.7 Transkribus_downloader

 3.2.8 Transkribus_uploader

 3.2.9 TranskribusDU_transcriptUploader

o 3.3 LA (Layout Analysis)

 3.3.1 analyze the Layout

 3.3.2 analyze the Layout (batch)

o 3.4 Recognition

 3.4.1 list the HTR HMM Models

 3.4.2 apply an HTR HMM Model

 3.4.3 list the HTR RNN Models and Dictionaries

https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Reference_Documents:
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Code
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Note_on_the_proxy_settings
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#on_Transkribus_Login
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Command_Line_Utilities
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Persistent_login
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Collections
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Add_Document.28s.29_to_Collection
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Duplicate_Document.28s.29_from_Collection_to_Collection
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Create_a_Collection
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Delete_a_Collection
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#List_a_Collection
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Managing_transcripts_of_a_document
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Filtering_the_last_transcript_of_each_page
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Filtering_based_on_Page_Numbers
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Filtering_based_on_Dates
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Filtering_or_Checking_based_on_Status
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Filtering_or_Checking_based_on_User
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Generating_a_TRP_file
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Operation
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Usage
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Transkribus_downloader
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Transkribus_uploader
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#TranskribusDU_transcriptUploader
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#LA_.28Layout_Analysis.29
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#analyze_the_Layout
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#analyze_the_Layout_.28batch.29
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Recognition
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#list_the_HTR_HMM_Models
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#apply_an_HTR_HMM_Model
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#list_the_HTR_RNN_Models_and_Dictionaries

D6.14 DU tools 31th December, 2017 20/20

 3.4.4 Train an HTR RNN Model

 3.4.5 apply an HTR RNN Model

 3.4.5.1 upload private 'temp' dictionaries

 3.4.5.2 Get status of current job

 4 (Non-Urgent) Questions

o 4.1 Locking

o 4.2 Page Status

o 4.3 Storing Data

https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Train_an_HTR_RNN_Model
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#apply_an_HTR_RNN_Model
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#upload_private_.27temp.27_dictionaries
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Get_status_of_current_job
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#.28Non-Urgent.29_Questions
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Locking
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Page_Status
https://read02.uibk.ac.at/wiki/index.php/Transkribus_Python_API#Storing_Data

