
READ
H2020 Project 674943

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 674943

D4.2
READ Platform and Service

Maintenance

Philip Kahle, Sebastian Colutto, Günter Hackl, Günter Mühlberger
UIBK

Distribution: http://read.transkribus.eu/

Project ref no. H2020 674943

Project acronym READ

Project full title Recognition and Enrichment of Archival Documents

Instrument H2020-EINFRA-2015-1

Thematic priority EINFRA-9-2015 - e-Infrastructures for virtual re-
search environments (VRE)

Start date/duration 01 January 2016 / 42 Months

Distribution Public

Contract. date of deliv-
ery

31.12.2017

Actual date of delivery 23.11.2017

Date of last update 08.12.2017

Deliverable number D4.2

Deliverable title READ Platform and Service Maintenance

Type Demonstrator

Status & version FINAL

Contributing WP(s) WP4

Responsible beneficiary UIBK

Other contributors All partners

Internal reviewers Gundram Leifert, Hervé Dejean

Author(s) Philip Kahle, Sebastian Colutto, Günter Hackl, Gün-
ter Mühlberger

EC project officer Martin Majek

Keywords Transkribus

Contents

1 Executive Summary 4

2 Service Maintenance 4
2.1 Software Development in Year Two . 5

3 Architecture 5
3.1 Importance of the RESTful API . 7

4 Hardware 7

5 Conclusion and Outlook 7

D4.2 READ Platform and Service Maintenance 3/ 7

1 Executive Summary

This deliverable outlines the progress of task 4.1, READ platform and service mainte-
nance, which involves activities such as updating background systems, bug and error
handling, system migration (to larger servers according to the expanding network), user
support, and similar activities.
In the first year of the project, activities were focussed on improving the overall user
experience by fixing existing bugs in the system and extending functionality. On the
other hand, the architecture of the platform was overhauled with a focus on scalability
which eases the addition of hardware resources in the future. Furthermore, a migration
of parts of the system to the University of Innsbruck computing center aimed at provid-
ing improved availability of the platform.
In the second year the main goal in this task was to improve existing functionality; only
urgently needed features have been added. Also the overall architecture designed in the
first year has proven to be robust and was just slightly adapted where shortcomings were
revealed. Due to this, the platform could be scaled hardware-wise as planned.
This deliverable is divided into three parts: the first deals with service maintenance, the
second part describes the adjustments in the architecture of the platform, and the last
part provides some details on currently used hardware resources and additions in the
near future.

2 Service Maintenance

The starting point of the READ platform was the existing Transkribus system, developed
in the TranScriptorium project. Transkribus allows a user to ingest sets of document im-
ages into the system, where they are stored persistently, transcribe and enhance them in
a standardized way and, finally, export them in different formats, such as METS/ALTO,
PDF, Word or Excel. Several integrated tools ease the transcription process with auto-
mated steps, e.g. finding regions and/or lines in the images or recognizing the text.
When the project started, Transkribus had a user count of 2828 (as of 1.1.2016). During
the first year, the dissemination activities led to 2082 new users that could be acquired
(28.11.2016). Between that date and 24.11.2017 3436 registered in the platform which
is a significant increase compared to the first year. UIBK received about 272 feature
requests and bug reports in 2016 (until 28.11.2016) and since then 306 of those1. Putting
that in correlation to the number of new user registrations, one can reason that the base
functionality used by most users is less prone to error.
In 2016, the platform was unavailable for 7 hours due to scheduled maintenance. One
incident with a malfunctioning storage system caused an unscheduled downtime of 17
hours; an issue which will be reflected in the migration strategies in 2017. The service
availability for the first year can thus be stated with 99,73%. Due to the modular ar-
chitecture (see section 3)it was easier to update parts of the platform and therefore the
scheduled downtime could be reduced to 3,5 hours in 2017. However there still occured
problems that caused unscheduled downtime or malfunctionioning of parts of the sys-

1The numbers include all reports that have been sent via the reporting feature in the Transkribus GUI

D4.2 READ Platform and Service Maintenance 4/ 7

tem. As the monitoring solution in place did not cover all of those incidents, only an
estimation of about 20 hours of unscheduled downtime can be given, which yields an
overall availability of ∼99,73%.
Strategies to increase that number will be followed in the third year of the project: while
some sources of error are now known and may therefore be eliminated it is crucial to
put more effort into server administration and testing to counter the unexpected. As
mentioned before, UIBK maintains a monitoring system that can help to detect prob-
lems earlier if configured exhaustively. The same goes for UIBK’s build server2 that
automatically runs software tests and can notify developers about potential problems
before they disrupt operation.

2.1 Software Development in Year Two

The second year started with an important milestone: Transkribus GUI version 1.0 was
released, marking the tool, more or less, as feature-complete. Since then only a few
urgently requested features and those related to the integration of tools (see D4.5) have
been added to the client application. The main focus was set on improving existing
functionality and the back-end services.
While there are still often feature requests that may very well be useful for specific
workflows it has to be stressed that the complexity of the Transkribus platform has
reached a level that is hard to manage for a small development team. Besides the tests
done on a new feature it has to be thoroughly tested whether existing functionality is
broken by the changes. In case a fitting test does not exist yet this code has to be written
too. Moreover, for each existing feature there will be at least one reasonable request by
a user to improve it in a certain way. Therefore, each new feature must be evaluated
carefully in the third year and there are also plans to remove some that did not stand
the test of time or are rarely used. Refactoring and enforcing the reuse of solutions that
have proven to be robust and easy to use is also crucial to ease maintainability. The
following reduction in complexity will then create space to add the tools that have not
yet been integrated in year three.

3 Architecture

In year one, the server application of Transkribus was split into two parts: one web
application (TranskribusServer) that serves the data to clients via its REST API and a
worker application (TranskribusAppServer) responsible to handle heavy workload tasks
such as layout analysis or text recognition. Moreover, the Quartz scheduler framework
was used to implement queues for specific tasks and executing the jobs from those queues.
As the number of different job tasks grew this year, it became clear that a more flexible
system is needed to cater for the specific needs in the Transkribus platform. Thus, a
custom-made solution was put into place which also allowed to further modularize the
platform: with the current system it is possible to implement applications to handle
specific job types or even just one of those, e.g. keyword spotting requests are now dealt

2https://jenkins.io/

D4.2 READ Platform and Service Maintenance 5/ 7

with in an application including that specific module. Once the workload in a module
reaches a critical level, it is possible to deploy and start more instances of the module; the
system automatically distributes the workload among them. While the scalability was
already vastly improved in year one, the modular approach allows to scale the system
according to the current needs and available hardware. An overview of the platform
architecture is shown in figure 1.

Figure 1: Current Transkribus architecture

D4.2 READ Platform and Service Maintenance 6/ 7

3.1 Importance of the RESTful API

As described in section 2, a point in the project is reached where the maintenance of the
code base of Transkribus becomes quite time consuming and features have to be chosen
selectively before being implemented.
However, very specific requirements of transcription projects do not exclude using Tran-
skribus for their purpose. The RESTful API of the system allows to interface the system
to build necessary functionality outside of the platform. For instance, a project at the
Austrian Academy of Sciences3 uses a custom-built website, visualizing the progress of
the project based on data from the system’s API. Another important example is of course
the Transkribus webinterface built in the project that uses this interface (see D5.6).
While this service was at first built with the Transkribus GUI in mind, the second year
of the project showed that this API is a very valuable asset and future design decisions
regarding the endpoints of the service will reflect this importance by keeping the entry
threshold to the usage as low as possible.

4 Hardware

In the end of the first year, UIBK acquired an HP Bladecenter including 16 servers with
12 cores each. To the date of this writing, 9 of those machines have been added to the
Transkribus platform, running instances of TranskribusAppServer. Only few load peaks
have been experienced where the setup was exhausted in the second year.
The most expensive task is currently the training of the HTR engine (see D7.8) and
in year three, the used engine by URO will be backed by the well-known Tensorflow
framework, which allows to speed up the training phase using graphics processing units
(GPU). In this turn, UIBK is planning to add respective server machines including GPUs
to the platform, which promises a massive increase in efficiency. Taking into account
the trend in the number of registered users (see section 2) the standby hardware should
then be sufficient at least until the third quarter of 2018.

5 Conclusion and Outlook

While the effort put into this task could be reduced to some degree as expected, the
increase of active users and also in the platform’s code complexity still required a lot
of attention. Maintaining high quality of service will involve an increased amount of
resources that has to be put into service maintenance in the third year. Upcoming
challenges include administrating the infrastructure, maintaining the code base of the
platform and polishing existing functionality.

3https://www.oeaw.ac.at/en/acdh/projects/event-detail/article/wiennerisches-diarium-digital-
pilotstudie-zur-erschliessung-einer-historischen-zeitung/ (project description in German, accessed
on 27th of November 2017)

D4.2 READ Platform and Service Maintenance 7/ 7

