

Keyword Searching and Indexing in Large Collections of Handwritten Documents

Roger Labahn

Computational Intelligence Technology Lab

- Mathematical Optimization
 Institute for Mathematics
- University of Rostock Germany

Prologue

Foundation

Application

Epilogue

Motivation

Question

Do we really need a good transcription for searching and investigating?

Ambitions

- understand different concept & its applications
- learn technological terminology
- know about configuration & behaviour, features & bugs, ...

Note!

- tools for continuous work NOT just engines for execution
- adapt for specific challenges understand & interpret outcomes

Prologue

Foundation

Application

Epilogue

Workflow - Classic

Text Recognition Process

- Neural Network / HMM outputs: estimate character probabilities

Raw Reading Result

- method: choose most likely character per position
- free reading: without considering document context
 e.g.: language, time, writer, . . .

Post - OCR Correction

- find & correct errors: use external sources from document context
 e.g.: language models, dictionaries, transcripts, . . .
- strings: text transcription

Workflow - Recent

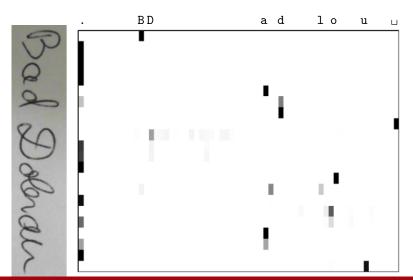
Text Recognition Process

- Neural Network / HMM outputs: estimate character probabilities

Confidence Matrix - CONFMAT

- idea: evaluate entire recognition information
- application: Store this text recognition result!

Decoding


- query strings: use external sources from document context
- find optimal match / representation: guery ← ConfMat

Confidence Matrix

Measuring Similarity: String vs. String

Definition (LEVENSHTEIN Distance)

dist(string1, string2) := count(insertions, deletions, substitutions)

Algorithm Dynamic Programming

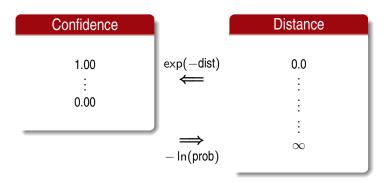
- extremely efficient very fast
- finds optimal (shortest / cheapest) path through weight (distance / cost) matrix
- weights: distance cost
- counting \(\rightarrow \) adding costs (weights)

Example: dist(WIEN, WEIN) = 2

insertions & deletions								
		W	Е	I	N			
	0	1	2	3	4			
W	1	0	1	2	3			
	2	1	2	1	2			
Ε	3	2	1	2	3			
Ν	4	3	2	3	2			
	'							
	W		1 1	E N				
	W	Ε	I	N				

with substitutions								
		W	Ε	I	N			
	0	1	2	3	4			
W	1	0	1	2	3			
1	2	1	1	1	2			
Ε	3	2	1	2	2			
N	4	3	2	2	2			
	W	I E	E I	N N				

Measuring Similarity: String vs. ConfMat


		В	a	d		D	0	b	e	r	a	n
=	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
IN	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
^	1.00	0.00	1.00	1.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ω	1.00	0.00	1.00	1.99	2.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	1.00	0.00	0.99	1.99	2.99	3.99	0.00	0.00	0.00	0.00	0.00	0.00
0	1.99	1.00	0.00	1.99	2.99	3.99	4.98	0.00	0.00	0.00	0.00	0.00
1	2.30	1.31	0.31	0.00	2.64	3.64	4.64	5.64	0.00	0.00	0.00	0.00
	3.30	2.30	1.31	0.00	1.00	3.64	4.64	5.64	6.63	0.00	0.00	0.00
0 -	4.30	3.30	2.30	1.00	0.00	1.99	4.64	5.64	6.63	7.63	0.00	0.00
XA	4.81	3.81	2.81	1.51	0.51	0.00	2.50	5.15	6.15	7.14	8.14	0.00
(+)	4.81	3.81	2.81	1.51	0.51	0.00	0.90	3.40	6.05	7.05	8.04	9.04
	4.81	3.81	2.81	1.51	0.51	0.00	0.87	1.77	4.28	6.92	7.92	8.92
^	0.00	3.81	2.81	1.51	0.51	0.00	0.87	1.77	2.77	5.27	7.91	8.91
8	0.00	0.00	3.81	2.50	1.50	0.99	0.00	1.87	2.77	3.76	6.26	8.91
0	0.00	0.00	0.00	3.11	2.11	1.61	0.61	0.00	2.48	3.38	4.37	6.88
600	0.00	0.00	0.00	0.00	2.11	1.61	0.61	0.00	0.99	3.38	4.37	5.36
2	0.00	0.00	0.00	0.00	0.00	2.39	1.39	0.78	0.79	1.76	4.17	4.37
~	0.00	0.00	0.00	0.00	0.00	0.00	1.39	0.78	0.79	1.49	2.48	4.37
Sel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.78	1.78	1.78	1.49	3.48
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.78	1.78	1.49	2.00
-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.78	1.49	2.00
>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.46	2.45
(0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.45

Probability / Confidence \to Distance / Cost

Asymptotic Problem

- confidence mapping / scaling of arbitrarily large distances
- What distances practically correspond to probability Zero?

Prologue

Foundation

Application

Epilogue

Setup

Text Recognition Engine

Text → ConfMats per line

Decoding Engine

Query \longrightarrow Alternatives ranked by confidence / distance

Measurement Issues

- Confidences are NO PROBABILITIES!
- Confidences / Distances have NO ABSOLUTE meaning!
- Measurements are essentially INCOMPARABLE across different queries!
- Thresholds require MANUAL CONFIGURATION & TUNING!

Keyword Search

String Search

INPUT Query String

Decoding Everywhere: distance to query

OUTPUT rank "reasonable" hits - skip "irrelevant" answers

Big Data Issues

- Response time: inacceptable !?
- Preprocessing: index → database

Transcription

Reading Text

INPUT Language Model – Dictionary incl. word frequencies

Decoding distances: all dictionary entries everywhere

OUTPUT "reasonable" text alternatives: close to ConfMat & Language Model

Issue

both poor Text Recognition AND Language Model

Investigating

Challenges

- demanding Language Models: fuzzy / dynamic / incomplete
- complex queries:
 specific combinations character classes restricted vocabulary

Regular Expression Decoding

- Regular Expression: Computer Science & Programming
- unsupported features: named classes, . . .
- additional feature: dictionary classes

Investigation with Regular Expressions

Regular Expression Example

four-digit year: 1YYY 1[0-9][0-9][0-9] 1[0-9]{3}

Regular Expression Syntax

Regular Expression Example

complete date: TT.MM.YYYY

 $.*(?<KW>[0-3][0-9]\.[0-1][0-9]\.[1-2][0-9]{3}).*$

Note

- match: against the entire line
- score: designated KW-group
 - .*(?<KW><query>).*

Performance

TRANSKRIBUS KWS Expert Mode

- Regular Expression Decoding: .*(?<KW>[0-9]{4}).*
- KWS demo collection: 388 pages from StAZh 1796-97
- >> ≈ 40 s

Note

- strongly depends upon hardware
- coming up next: massive parallelization on CPU & GPU

Performance

Office laptop single core

- Searching 1 keyword in 10.500 lines (433 BENTHAM pages):
- \Rightarrow 2 3 s average
- Reading 1 page against 11.650 words dictionary:
- \Rightarrow 8 9 s average

Prologue

Foundation

Application

Epilogue

Questions

Your wishes – expectations – requirements . . .

- ... realistic query type / elaborateness / complexity ??
- ... realistic data corpus size ??
- ... realistic query response time ??

THANKS ...

MoU Partner SME

PLANET artificial intelligence GmbH

EU HORIZON2020 Grant

... for your kind attention!

