RECOGNITION & ENRICHMENT
OF ARCHIVAL DOCUMENTS

D7.7
HTR Engine Based on NNs P1

Concepts, Integration and Experiments

Tobias Griining, Gundram Leifert, Tobias StrauB, Roger Labahn
URO

Distribution: http://read.transkribus.eu/

READ
H2020 Project 674943

This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No 674943

Project ref no.

H2020 674943

Project acronym

READ

Project full title

Recognition and Enrichment of Archival Documents

Instrument

H2020-EINFRA-2015-1

Thematic priority

EINFRA-9-2015 - e-Infrastructures for virtual re-
search environments (VRE)

Start date/duration

01 January 2016 / 42 Months

Distribution Public
Contract. date of deliv- | 31.12.2016
ery

Actual date of delivery 30.12.2016
Date of last update 21.12.2016
Deliverable number D7.7

Deliverable title

HTR Engine Based on NNs P1

Type Demonstrator
Status & version Final
Contributing WP(s) WP7
Responsible beneficiary URO

Other contributors UPVLC

Internal reviewers

George Retsinas (NCSR), Joan Puigcerver (UPVLC)

Author(s)

Tobias Griining, Gundram Leifert, Tobias Strauf,
Roger Labahn

EC project officer

Martin Majek

Keywords

RNN, segmentation free, context, influence of training
data

Contents

Executive Summary 4
1. Introduction 4
2. RNN Integration 4
3. Concepts of RNN Based HTR 5
3.1. Segmentation Free Processing)
3.2. Context Sensitive Processing 6
3.3. RNN Model Parameter Adaption via Learning 6
3.4. ConfMat — RNN Model Output 7
4. Training Data and Noise Impact 7
5. RNN/HMM Hybrid System 8
A. Appendix 10
A.1. Training Data and Noise Impact — Results 10
A.2. RNN/HMM Hybrid System — Results 12

D7.7 HTR Engine Based on NNs P1 3/ 12

Executive Summary

The first years deliverable describes the importance of the Neural Network based HTR
and its basic concepts. It is mentioned that the focus of the first year was the integration
of UROs existing Neural Network based HTR into Transkribus. Finally, results of two
experiments regarding the influence of the amount of training data on the error rate
and the combination of Neural Network based HTR with HMM language modeling are
described.

1. Introduction

Since 2009 artificial Neural Networks (NN), more precisely so-called Recurrent Neural
Networks (RNN), are becoming more and more important in the fields of Handwritten
Text Recognition (HTR) or Keyword Spotting (KWS). Starting at the ICDAR2009 con-
ference, nearly all competitions organized in the fields of HTR or KWS were won by
teams using RNNs. Therefore, a fast ingegration of this technology into Transkribus
was one focus of the first year of READ. Besides, further research and development to
improve HTR accuracy as well as to simplify the usage of RNNs are necessary — Task
7.3 formulates this.

Task 7.3 - Neural Network based HTR

The following is copied from the Grant Agreement:

This task comprises all investigations concerning Neural Network (NN) based HTR
technology. It focuses on the NN training based upon a sufficiently large number of line
images along with their textual transcripts, and how the NN output can be effectively
decoded into word graphs for further processing in the overall workflow. This covers both
training and decoding rely on well-known machine learning techniques that were exten-
sively used and extended by the UPVLC and URO. Further flexibility, improvement and
particular issues require ongoing research: maintaining stability of the training process
for avoiding degenerated NNs; speeding up the training process for advanced flexibility;
adapting to specific data for effective extendibility; researching on word-based graphs
and character-based graph generated from NN-based decoders for interactive transcrip-
tion and KWS; incorporating advanced language models into the decoding procedures
for improved overall performance in transcription and search tasks. Furthermore the NN
based HTR engine available at URO will be customized for use in the project workflow.
From a research or an implementation point of view, we will then investigate the inter-
actions of the algorithms or the engine, respectively, across the interfaces to adjacent
workflow modules.

2. RNN Integration

As already mentioned in the introduction, a lot of work was done to integrate UROs
RNN based HTR engine into Transkribus. To facilitate a smooth integration as well as a

D7.7 HTR Engine Based on NNs P1 4/ 12

Il — el pllel

Figure 1: text-line image with a difficult character segmentation scenario.

parallel usage of HMMs and RNNs, it is essential to define interfaces, which are then to
be implemented by all modules. The according interface definition was a collaborative
work of UIBK and all technical partners (UPVLC, ASV, NCSR, CVL, URO), their
implementation was subsequently done by URO, and they are now publicly available via
GitHub at https://github.com/Transkribus/TranskribusInterfaces.

Interface Implementation

The defined interfaces had to be implemented for the URO based HTR to make it
available in Transkribus. The resulting implementations are on GitHub at https://
github.com/Transkribus/CITlabModule (Up to now it is a private repository, but will
be publicly available in the near future.)

3. Concepts of RNN Based HTR

In this section, basic concepts of the RNN based HTR framework are introduced. Ba-
sically, RNN based HTR models allow a segmentation free, context sensitive processing
of text-line images. The model parameters are adjusted via training, and therefore it
is possible to generate models for different corpora easily. Finally, the output of such
an RNN based model is a so-called confidence matriz (ConfMat), which is a very flex-
ible output structure, enabling us to incorporate HMM approaches (to improve HTR
accuracy) or to do a very powerful regular expression decoding (resulting in a state of
the art keyword spotting system). These concepts will be explained roughly in the next
subsections.

3.1. Segmentation Free Processing

(Classical approaches for making the content of scanned documents automatically ac-
cessible rely on the segmentation of text into isolated characters. Such so-called OCR
(Optical Character Recognition) approaches fail to tackle problems were a segmenta-
tion into single characters is not easily accessible or simply not possible (see Fig. 1).
This scenario often occurs in handwritten texts (and especially historical handwritten
texts). Hence, RNNs (as well as HMMs) process a text-line image as a data sequence
(see Fig. 2), what is meaningful and highly motivated by the way we humans process
text.

D7.7 HTR Engine Based on NNs P1 5/ 12

https://github.com/Transkribus/TranskribusInterfaces
https://github.com/Transkribus/CITlabModule
https://github.com/Transkribus/CITlabModule

Bod Do - B
ot Do, - 2B
Dobrat ~ BB.
-@d@nm ~ BB.ad

~ BB.ad. ..

Figure 2: Schematic depiction of the sequential processing of a text-line image.

‘/\. ~ u?? OR n 77

b -

Figure 3: Context is essential for a high HTR accuracy. Isolated characters or character
sequences are sometimes hard or even impossible to transcribe.

3.2. Context Sensitive Processing

Since the recognition of isolated characters or sequences of characters is hard or even not
possible in various situations (see Fig. 3), a context sensitive processing is essential. In
the HTR scenario, context sensitive processing means that the already processed signal
influences the further processing of the signal. In the RNN based HTR framework,
this is realized via so-called recurrent connections. This means that at each time step
(position in the input image), besides the visual input, the system also gets its own
previous results of the last time-step as input. This is shown in Fig. 4 (blue arrows).
Further information can be found in [2].

3.3. RNN Model Parameter Adaption via Learning

The RNN based HTR model’s applicability and accuracy depend on the model param-
eters (whose number can easily reach millions). Since the model is fully differentiable,
paradigms of machine learning are directly usable, which means that the model param-
eters are adjusted by showing the model a certain amount of training samples. These
are simply pairs of text line images as inputs and the corresponding text transcripts.
Basically, an error between the model’s output (given a training sample image) and the
correct transcript is calculated for each training pair. The derivative of this error is
propagated through the model and used to adapt the model parameters slightly.

D7.7 HTR Engine Based on NNs P1 6/ 12

Figure 4: Schematic representation of a complex recurrent cell - blue arrows depict re-
current connections, these facilitate context sensitive processing of the input
sequence.

The amount of training data is a crucial value and differs among different writing styles,
time periods, ... as well as limitations to the amount of usable training data is often an
issue. Consequently, various experiments were performed to investigate the influence of
the amount of training data on the HTR accuracy. Furthermore, we also investigated
the influence of different approaches to increase the amount of training data, see Sec. 4.

3.4. ConfMat — RNN Model Output

A great benefit of the RNN model is the output structure - the so-called confidence
matriz (ConfMat). An example ConfMat and the corresponding text image are shown
in Fig. 5. In general, each row of a ConfMat belongs to a position in the image and
contains a conditional distribution over all possible (fixed due to the model) characters.
Thus, an entry of the ConfMat is a real number between 0 and 1 representing the
probability of a specific character at a certain image position (in Fig. 5 darker means
more likely). Because no hard binary (true-false) decision is made, no information is lost
and ConfMats contain all information necessary to allow a powerful and fast decoding
process. A decoding approach using regular expressions [1] leads to very flexibel systems,
as proven by UROs system [3] when winning the ImageCLEF 2016 competition [5].
Furthermore the ConfMats can be used as inputs for HMMs. An example and results
of such a hybrid system are explained in Sec. 5.

4. Training Data and Noise Impact

Since the required amount of training data and the effect of more training data regarding
the HTR accuracy are of immense importance for users, experiments were performed to
investigate this relation. The so-called German Konzilsprotokolle collection was used.

D7.7 HTR Engine Based on NNs P1 7/ 12

-
% : I|
5

Figure 5: Image writing with corresponding ConfMat.

This collection consists of hundreds of pages and is maintained by a READ MoU part-
ner. 8770 text-line images (with their transcripts) were extracted. This set was divided
into 6857 samples to train the model (training set 7) and 1913 samples to validate the
model (validation set). The dataset is publicly available [1]. In different experiments,
models were trained on subsets of 7 to investigate the impact of the reduction of train-
ing data. Furthermore different types of noise to artificially increase the amount of
training data (to reduce overfitting/increase generalization) were introduced. We differ-
entiate between preprocessing noise (pp - which is noise on the parameters of the image
processing algorithms preparing the writing image for the neural network) and neural
network noise (nn - which is dropout like noise on the neural network activations during
training). These types of noise will not be explained in more detail here, but basically
they aim at artificially augmenting the amount of data. All models were trained under
comparable conditions: same learning rate, momentum, minibatch size, as well as a
consistent number of training samples shown per epoch. Results are depicted in A.1.

5. RNN/HMM Hybrid System

In a joint work of UPVLC and URO during UPVLC’s Researcher Internship at URO the
combination of RNNs and HMMs was investigated. Collaborative activities were held
to improve the RNN-based handwritten text recognition system by incorporating and
testing different n-gram language models at word and at character level. Final results
have shown that the best HTR performence is obtained by using a 5-gram language
model at character level, which additionally deals with the problem of out-of-vocabulary-
words, i.e. words not known from the training set. The results are outlined in details in

the READ wiki (and attached as A.2 here).

D77 HTR Engine Based on NNs P1 8/ 12

References

[1] Tobias Griining et al. read_dataset german_ konzilsprotokolle. Dec. 2016. URL:
https://doi.org/10.5281/zenodo.215383.

[2] Gundram Leifert et al. “Cells in Multidimensional Recurrent Neural Networks”.
In: Journal of Machine Learning Research 17.97 (2016), pp. 1-37. URL: http :
//jmlr.org/papers/v17/14-203 . html.

[3] Tobias Strauf} et al. “CITlab ARGUS for Keyword Search in Historical Handwritten
Documents: Description of CITlab’s System for the ImageCLEF 2016 Handwritten
Scanned Document Retrieval Task”. In: CEUR Workshop Proceedings. Evora, Por-
tugal, Sept. 2016. URL: http://ceur-ws.org/Vol-1609/16090399. pdf.

[4] Tobias Straufl et al. “Regular expressions for decoding of neural network outputs”.
In: Neural Networks 79 (2016), pp. 1-11. URL: http://www.sciencedirect.com/
science/article/pii/S0893608016000447.

[5] M Villegas, J Puigcerver, and AH Toselli. “Overview of the ImageCLEF 2016 hand-
written scanned document retrieval task”. In: CEUR Workshop Proceedings. Evora,
Portugal, Sept. 2016. URL: http://ceur-ws.org/Vol-1609/16090233. pdf.

D7.7 HTR Engine Based on NNs P1 9/ 12

https://doi.org/10.5281/zenodo.215383
http://jmlr.org/papers/v17/14-203.html
http://jmlr.org/papers/v17/14-203.html
http://ceur-ws.org/Vol-1609/16090399.pdf
http://www.sciencedirect.com/science/article/pii/S0893608016000447
http://www.sciencedirect.com/science/article/pii/S0893608016000447
http://ceur-ws.org/Vol-1609/16090233.pdf

A. Appendix

A.1l. Training Data and Noise Impact — Results

Influence of Number of Lines on CER

25.00%
20.00%
15.00% w428
m 857
E 1714
10.00% W 3425
W 6850
- . I
0.00%
no pp pp & nn

Noise Type

Figure 6: This figure shows the influence of the number of lines used for training and
of noise on the HTR error (CER). The models were trained using the number
of lines shown in the right legend and validated on a set of 1913 lines for
all experiments. It is easy to see, that more training data yields lower error.
This behaviour saturates at a certain point. Furthermore, noise leads to a
significant improvement of the HTR accuracy for the same amount of training
data.

D7.7 HTR Engine Based on NNs P1 10/ 12

Influence of Noise on Overfitting

100.00%
79.43%
63.10%
50.12%
39.81%

31.62% 1714 pp & nn

25.12% —— 1714 pp

19.95% — 1714 no

CER (Log-Scale)

15.85%
12.58%
10.00%

7.94%
2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36
1 3 5 7 9 11131517 1921232527 29 31 33 35

Epochs

Figure 7: This figure shows the influence of noise to overfitting. The models were trained
with 1714 training samples. With the classical training approach the error on
the validation set decreases for the first 13 epochs. Afterwards the model starts
to overfit (error on the validation set increases). Introducing noise in epoch 14
yields a further drop of the validation error.

D7.7 HTR Engine Based on NNs P1 11/ 12

A.2. RNN/HMM Hybrid System — Results

The following is taken from the read wiki.

D7.7 HTR Engine Based on NNs P1 12/ 12

25.11.2016 Technical Meetings:AlejandroAtURO - READ Wiki

Alejandro @ URO (14.05.2016 - 17.06.2016) (e

Participants [edi

Alejandro, Tobias S., Gundram, Tobias G., Roger

Mayor task (edi

The task is to understand the systems from each other so that one can combine the systems at different levels.
We will start at the bottom (image, PageXML with baseline) go through normalization and feature extraction to
the "real" HTR system. URO and UPVLC will take a baseline system and will try to improve it by plugging in
different components.

Dataset used for HTR Evaluation and Assessment Measure [edi
HTR performance under the different component/module combination is evaluated on Bozen dataset used in
the:ICFHR2016 Competition on Handwritten Text Recognition on the READ Dataset

Basic statistics of this dataset are given in the below table. Running words, lexicon size and running OOVs
figures are reported for the tokenized version of the transcripts.
Training | Validation

#Pages 350 50

#Lines 8367 1043

Run-Words 35169 3994

Lex-Size 6993 1527

Run-O0V/(%) 16.7

As assessment measures we employ:

+ WER: Word Error Rate
+ CER: Character Error Rate

Both are computed on tokenized reference transcripts and recognized hypotheses.

It was also discussed about using an external corpus to provide more text for training language model and for
additional lexicon. We tried Alvermann Konzilsprotokolle Alvermann, but the new ROOV didn't decrease
significantly (16.35%).

Components (edi

Both HTR systems can be separated into different components. The input and output of theses components
can be images or feature maps in lower levels and ConfMats and word graph in higher levels. The format to
load/save a binary feature is described in Featurefile:Format. For each component we will describe the main
goal, the method, the desired input and the resulting output of each component.

UPV HTR System: Component Description [edit]

UPV HTR system comprises the following components:

1. Line extraction: (shortcut R) Line images are extracted from original pages images employing the poly-
rectangles computed using the provided baselines.

2. Line-level preprocessing: Extracted line images are preprocessed for improving contrast and correcting
skew and slant.

3. Aachen feature extraction: Applied on preprocessed line images, generating for each of them a 256-
dimensional feature vector sequence. PCA is applied in order to reduce the dimension of sequences to
20. 4 extra components (moments coefficients used in the normalization process) are added to the

https://read02.uibk.ac.at/wiki/index.php/Technical_Meetings:AlejandroAtURO 1/7

25.11.2016 Technical Meetings:AlejandroAtURO - READ Wiki
previous 20 components. At the end, each line image preprocessed is represented by a 24-dimensional
feature vector sequence. Size normalization is carried out in this process implicitly.

4. Training module: Using previously feature vector sequences and corresponding transcripts, Baum-
Welch algorithm is employed to train character HMMs. In addition word-level 2-gram language model is
trained using the transcripts of the training partition. Words in the lexicon are modeled by concatenating
corresponding characters (HMMs).

5. Decoding module: for each input feature vector sequence of the test partition, the best word sequence
is outputted (Viterbi Algorithm) by the HMM-based HTR recognizer employing trained character HMMs,
lexicon model and word-level 2-gram model.

Contrast enhancementmethod for line-level preprocessing is similar to the Sauvola binarization approach, but
in this case the original gray-level of foreground (i.e. handwritten strokes) is actually kept. On the other

hand, skew/slantcorrection method is based on maximizing the corresponding horizontal/vertical projection
profile for different rotation/shear angles.

(shortcut A) the component group: 1, 2 and 3 (without applying PCA).

Modeling Issues and Adopted Parameter Values [edit]

Aachen Feature Extraction parameters:
Sliding window width = 32 pixels
Sliding window step = 2 pixels
Scaled width = 8 pixels
Scaled height = 32 pixels
Outputted feature vectors: 256 components + 4 components based on the 1st and 2nd order moment
coefficients computed
Dimension reduction (PCA): 256 --> 20 + 4

For HMM and Language Model training:

« For training n-gram each transcript of line image is enclosed between . These two meta-symbols have now

associated morphological models: <BS> (begin sentence) and <ES> (end sentence) respectively modeled
with HMMs of 3 states.

In the dictionary, for each word in addition to specify the constituent HMM characters, we add the
morphological symbols: <is> (initial space) and <fs> (final space) also modeled with HMMs of 3 states.

HMM Topology: For the 92 different characters, in general 6 states and 64 Gaussians per state were set up.
The exceptions are:

Symbols #HMM-States

I IR

() 4

i 5

M 7
<is> <fs> 3 word initial and final spaces
<BS> <ES> 3 Beginning and Ending Sentence

Language Model used:

Word-Level (WL):
2-gram model trained from the 8367 training transcripts
Smoothing method applied: Kneser-Ney
Lexicon based (6993 different words)

Character-Level (CL):

https://read02.uibk.ac.at/wiki/index.php/Technical_Meetings:AlejandroAtURO 2/7

25.11.2016 Technical Meetings:AlejandroAtURO - READ Wiki
3-, 7- and 8-gram models trained from the 8367 training transcripts
Smoothing method applied: Kneser-Ney
Lexicon free (92 chars)

Baseline recognition result using the full pipeline [edit]
Baseline recognition result obtained for the full pipeline (components: 1-5) before described.

WER_WL | CER_WL
57.7% 27.6%

The CER_WL figure was optimized on the validation set tunning GSF and WIP language model parameters.
The suffix _WLmeans that it was computes using Word-Levellanguage model (i.e. 2-gram word model).

URO HTR System: Preprocessing Component Description [edi

Seam Carving [edit]

(shortcut S) The input of this module is an image with a corresponding PAGE-Xml file. It collects the baselines
from the xml file and separates the image between these baselines using the seam carving algorithm. So for
each baseline it calculates one surrounding polygon (independent from the polygon saved in the Coords-tag).
The output is a set of lines. For each line it saves

» the sub image (bounding box of the surrounding polygon)

« the corresponding text (from the Unicode-tag)

» additional information (file name, position in original image, surrounding polygon,...).
Parameters

= distcost: Attracts the surrounding polygon to the baseline
= recalc: Captures missed punctuations (hyphens, dots, diaeresis,...)

Contrast Enhancement [edit]

(shortcut C) This modules enhances the contrast of the image. It does not make binarize! It assumes that there
is a minimal percentage of foreground and background pixels and that there are more background pixels than
foreground pixels. It calculates a threshold for the foreground/background intensity. Intensities above and below
these thresholds are set to white/black, between the threshold the intensity is scaled lineary.

Parameters
« foreground quantile (1-5%)
+ background quantile (30-70%)
+ slope (effects a dynamic background threshold calculation)

URO Writing Normalization [edit]

(shortcut U) This module assumes an image with white background and black foreground. It tries to minimize
the variability of the writings. All image manipulations are done as "soft" as possible (small changes in the
image should not have a great effect on the normalization). The size of the writing is normalized so that a
globally specified inter quantile distance has a desired height. The skew is corrected by applying a horizontal
triangular filter on local pixel intensities. A shift in y-direction is applied so that at each x-position the quantile of
the smoothed pixel intensities is at the same height. The slant in corrected so that the average slant between
-45° and 45° is zero.

Parameters
= quantile size (30-60%)
= target inter quantile distance
= size of triangular filter
» quantile for skew normalization (50%-60%)

Squashing [edit]

https://read02.uibk.ac.at/wiki/index.php/Technical_Meetings:AlejandroAtURO 3/7

25.11.2016 Technical Meetings:AlejandroAtURO - READ Wiki

(shortcut Q) The input image for this module is of arbitrary height and width with a normalized writing

(see Writing Normalization). The Aim of this module is to squash the height of the image to a specific value by
changing the image as less as possible. A baseline is detected by using a p-quantile. From this baseline a
specific number of pixels above and below are left unchanged. The other ranges (ascenders and descenders)
are squashed to a specific height using the tanh as squashing function.

Parameters
= p-quantile (50%-60%)
= upper/lower mainbody height
ascender/descender height

Feature Extraction [edit]

(shortcut F) As feature extraction a gabor-like feature extractor is applied to the image. For each frequency and
angle one gets a feature map, which is smaller than the original image (dependent on the subsampling). In one
experiment we change the subsampling rate in y-dimension from 4 to 2 which is denoted by the suffix '-ssy2'.

Parameters
+ subsampling in xand y (2-4)
= number of frequencies (1-3)
= number of angles (3-4)

Network Features [edit]

(shortcut N) A trained MDRNN provides for given input features the ConfMat. This ConfMat contains the
confidence of a character at a specific position. When the Confmat is normalized using softmax, the values can
be interpreted as character posterior probability. The ConfMat can also be interpreted as feature. The number
of features are then the number of characters and one feature for "Not a Character" (NaC). The the number of
features is 60-150.

The network has a kind of shrink-factor in x-direction, so that the number of features is lower by a network-
specific factor (4-8). To solve this problem one can "unsample” the trained network to get the same number of
features as the input.

In addition the internal activations of the last hidden layers can be seen as features. The number of features
varies dependent on the MDRNN layout. These features contain all information to produce the ConfMat - the
ConfMat is a trained linear combination of these features. Typically they are bounded in [-1,1]. The number of
features is 200-1000.

Parameters

» take ConfMat as feature (true)
+ take activations in last hidden layer as features (true)

Preprocess Noise [edit]

(shortcut *) To increase the variability of training samples it is possible to add noise to the training process.
Instead of adding noise to the image (pixel noise, blur, degradation, bleedthrough,...) we add noise to the
parameter of the preprocess. In most cases we add uniform distributed noise to quantiles. This noise is
denoted by "parameter” After a specific number of (pre-)training epochs the noise is added - this improves the
error rate on the validation set significantly when the training set is small. It is also possible to add additional
gaussian noise to the feature F - this noise is denoted by "activation”.

Baseline recognition result using the full pipeline [edit]

The baseline system is done using SCUQF2features. The MDRNN has two multidimensional multidirectional
layers (MD layers) with LeakyLP cells. Between both MD layers we put a feed forward layer because of
parameter dimension reduction and better generalization.

Combination of HTR Components and Evaluation (edi

UPV HTR System: Testing URO preprocessing modules [edit]

https://read02.uibk.ac.at/wiki/index.php/Technical_Meetings:AlejandroAtURO 4/7

25.11.2016 Technical Meetings:AlejandroAtURO - READ Wiki
1. BSL: Baseline recognition result at WL obtained for the full pipeline (components: 1-5) before
described.
2. SCU:

s Preprocess: Seam-carving line extraction, contrast enhancement and normalization.

= Feature Extraction: Aachen FE (PCA): 24-dimensional features vectors

= Optical Modelling: character HMMs, with BSL topology, trained from feature extraction data
+ Lex & LM Modelling:

= WL: lexicon and word level 2-gram
3. SCUQF:

= Preprocess: Seam-carving line extraction, contrast enhancement, normalization and squashing line
height.

= Feature Extraction: URQO's Gabor-like FE (PCA): 24-dimensional features vectors

= Optical Modelling: character HMMs, with BSL topology, trained from feature extraction data

s Lex & LM Modelling:

s WL: lexicon and word level 2-gram
4. RCUQF:
= Preprocess: Poly-rectangle line extraction, contrast enhancement, normalization and squashing line
height.
= Feature Extraction: URO's Gabor-like FE (PCA): 24-dimensional features vectors
= Optical Modelling: character HMMs, with BSL topology, trained from feature extraction data
s Lex & LM Modelling:

= WL: lexicon and word level 2-gram
= CL: non-lexicon and character level 8-gram
5. RCUQFN-H:
= Preprocess: Poly-rectangle line extraction, contrast enhancement, normalization and squashing line
height.
= Feature Extraction: output activations of the last hidden layer of the RNN (PCA): 24-dimensional
features vectors
= Optical Modelling: character HMMs, with BSL topology, trained from feature extraction data
s Lex & LM Modelling:
= CL: non-lexicon and character level 7-gram
6. RCUQFN-M:
= Preprocess: Poly-rectangle line extraction, contrast enhancement, normalization and squashing line
height.
s Feature Extraction: n/a
= Optical Modelling: One-state character HMMs, whose state emission probabilities are taken directly
from the RNN's confidence matrix.
s Lex & LM Modelling:
= CL: non-lexicon and character level 8-gram
WER_WL CER_WL CER_CL Frames Length

BSL 57.7% 27.6% |- 494 260/ 24
SCuU 59.0% 31.2% |- 539 260/ 24
SCUQF 63.5% 353% |- 528 128/ 24
RCUQF 58.3% 28.6% |28.0% |539 128/ 24
RCUQFN-H |-- -- 13.3% 531 400/ 60
RCUQFN-M |-- -- 11.6% 531 89/ --

https://read02.uibk.ac.at/wiki/index.php/Technical_Meetings:AlejandroAtURO 5/7

25.11.2016 Technical Meetings:AlejandroAtURO - READ Wiki

The CER_WL and CER_CL figures were optimized on the validation set tunning GSF and WIP language model

parameters. Column labelled with Frame sreports average number of frames per sample. Column labeled
with Length, shows dimension of feature extraction before / after applying PCA.

1le

15

14

CER

13

12

11

] 2 4 & g8 10
MN-Gram Order

The plot of CER vs N-gram order corresponds to the confidence matrix obtained with the RCUQF-M process

(CER ~ 18%). The table below shows CER_CL using char-level 6-gram for different number of states per each

character HMM.

#HMM-States CER_CL
RCUQFN-M |1 11.6%
RCUQFN-M |4 11.1%

For the RCUQFN-Mfigure, the NaC (NoT a Character) State-Loop Probability was optimized (SLP=0.05).

URO HTR System: Testing UPV preprocessing and FE modules (A) [edi

To evaluate the influence of the preprocess we train the described MDRNN using stochastic gradient decent.
We take the character error rate (CER) after 5 and 10 epochs on the validation set. The name of the
experiment is the order of preprocessing modules which we applied. A '-<description>' shows how we change
the preprocess from the default implementation. The baseline system is SCNQF. To make the feature
comparable we try to hold the properties constant

+ Frames: Average number of frames for one sample/line
» Length: Dimension of the feature vector for one frame

To have nearly the same number of frames, the target height for size normalization of module U have to be
17px times larger than the subsampling in x-direction of module F. In the baseline system the height is 34 and
the subsampling 2 accordingly. In one experiment we changed to height 51 and subsampling 3, which we
denoted by '-3' as suffix to the process steps.

Setup CER-5 CER-10 Frames | Length

SCUQF 25.1% |22.7% |520 128
RA 25.0% |22.7% 493 260
RCUQF 20.4% 18.0% 532 128

RCU-3QF-3 (21.8% (19.2% 530 128
RCUQF-ssy2 19.4% 17.7% (532 256

Setup |Epochs|Learning rate Noise CER
18 5e-3 no 19.5%
RCUQF* |9 5e-3 parameter 15.8%
15 le-3 parameter 13.4%
18 5e-3 no 19.5%

https://read02.uibk.ac.at/wiki/index.php/Technical_Meetings:AlejandroAtURO

6/7

25.11.2016 Technical Meetings:AlejandroAtURO - READ Wiki
RCUQF** |6 5e-3 parameter 16.5%
15 5e-3 parameter and activation |14.8%

Comparison of preprocess performance

a,

% o
o T Ve, R GV, VT

&

—— SCUGF
RCUOF
—— RCLL3QF-3

— RO S5y2
K\-A = RCUOQF*
e B I
—— \\—L .

11 16 a1 2B it 3 41

X B b B

CER onvakdason se1

‘}
%%@%

{L?‘ 5
)

epechs

URO HTR System: Testing Different Decoding Strategies [edit]

The decoding should be directly comparable to RCUQFN-M.
+ ho LM:
+ The output is the most likely character sequence from the ConfMat
s 1-gram:
+ Segmentation by simple regular expression, vocabulary lookup on word regions
= Default system (automatically generated regular expression and vocabulary)
s 1-gram, beam:
= Segmentation by simple regular expression, vocabulary lookup on word regions
s 1-gram, optimal segmentation

= As 1-grambut forced segmentation based on the groundtruth(lower bound for reachable error-

rate)
LM CER
no LM 18.0%
1-gram 14.3%
1-gram, beam 14.4%

1-gram, optimal segmentation |12.2%

https://read02.uibk.ac.at/wiki/index.php/Technical_Meetings:AlejandroAtURO 717

	Executive Summary
	1 Introduction
	2 RNN Integration
	3 Concepts of RNN Based HTR
	3.1 Segmentation Free Processing
	3.2 Context Sensitive Processing
	3.3 RNN Model Parameter Adaption via Learning
	3.4 ConfMat – RNN Model Output

	4 Training Data and Noise Impact
	5 RNN/HMM Hybrid System
	A Appendix
	A.1 Training Data and Noise Impact – Results
	A.2 RNN/HMM Hybrid System – Results

