RECOGNITION & ENRICHMENT
OF ARCHIVAL DOCUMENTS

D7.10
Language models

Maximilian Bryan, Soeren Laube, Nathanael Philipp
ASV

Distribution: http://read.transkribus.eu/

READ
H2020 Project 674943

This project has received funding from the European Union's Horizon 2020
research and innovation programme under grant agreement No 674943

Project ref no.

H2020 674943

Project acronym

READ

Project full title

Recognition and Enrichment of Archival Documents

Instrument

H2020-EINFRA-2015-1

Thematic priority

EINFRA-9-2015 - e-Infrastructures for virtual re-
search environments (VRE)

Start date/duration

01 January 2016 / 42 Months

Distribution Public
Contract. date of deliv- | 31.12.2016
ery

Actual date of delivery 28.12.2016
Date of last update 21.12.2016
Deliverable number D7.10

Deliverable title

Language models

Type report

Status & version in process
Contributing WP(s) WP7
Responsible beneficiary ASV

Other contributors

Internal reviewers URO, UPVLC

Author(s)

Maximilian Bryan, Soeren Laube, Nathanael Philipp

EC project officer

Martin MAJEK

Keywords

ARPA, Neural Networks

Contents

(1 Executive Summary| 4
2__Contextl 4
(3 Implementation| 5
[4 Existing functionality| 5
(5 Expand Abbreviations Experiments| 6
(5.1 Data preparation| 6
(5.2 Experiments| 7
(5.3 Simple network structure|. Lo 7
(.4 Bidirectional recurrent network structurel 7
B Resultsl. o 8
B6_Outlookl 9

D7.10 Language models 3/

1 Executive Summary

When given scanned documents, there are tools which segment the documents into lines
which then are given to an HTR engine. That engine transforms the graphical input
to a sequence of tokens. These tokens are characters or words respectively. With each
token, the HTR returns a confidence (or probability) for every token or character in
the dictionary. The language models receives a sequence of confidences along with the
character sequence and adjust the character sequence according to the learned patterns
in the language, that are unknown to the HTR. The goal of the language model is to
give the most likely i.e. most probable sequence.

In the current state of this task, a wrapper has been implemented that makes models,
trained using Python tools, usable. With this wrapper, forecasting tokens is possible
using a generic interface. The interface is implemented using the mentioned Wrappelﬂ
on the one hand and previously existing ARPA files on the other hand. An ARPA file
contains a n-gram language model. In the future, models for recognizing abbreviations
will be trained.

2 Context

Generally, a language model contains knowledge about a language, mostly patterns
about sequentially appearing words. These patterns are learned from training data.
The easiest way is to define a neighborhood and count the occurring token pairs. These
statistics can then be used to adjust a recognized text to a more likely text according to
learned patterns in the language. In the current state of the project, these basic types
of language models are called n-grams and are usually stored in files using the ARPA
format.

The advantage of the statistical approach is that it is easy to implement. The down-
side on the one hand is that every possible combination of tokens, together with their
probability, have to be stored. On the other hand, it cannot handle patterns that it
has not been seen in the training data. If the HTR has recognized The dog was and
the training data did not contain that example but only The dog has, it will correct
the grammatically and semantically plausible recognized text to another text, because
it does not know about the other variant.

To improve the accuracy of such n-gram models one can define so called backoff values.
These are used to enable combinations of n-grams which large n that were not seen in
the training. To facilitated this the entries in the 1-grams have additional backoff values.
With these values one can calculate probabilities for sequences of length n with OOV-
combinations.

The mentioned problem of out of vocabulary sequences shall be tackled by neural
networks. Neural networks are a powerful machine learning technique, which has received
a lot of attention in the last year for every kind of problems. Here, the neural network can
learn transition probabilities from the training data [1]. Since it also implicitly learns
semantic relations between words, it can give reasonable response to input sequences

'https://github.com/Transkribus/NeuralNetWrapper

D7.10 Language models 4/

https://github.com/Transkribus/NeuralNetWrapper

it has not seen before. Also, not every possible combination has to be stored in a
file, the network can be asked for a sequence’s probability. The downside is that the
implementation of a neural network is way more complicated than looking for values
in a file. In the current state of the task, a wrapper for trained neural networks is
implemented and can be used for the given problem. In the future, more complex
models for different use cases can be included into the HTR process.

3 Implementation

The ASV group is experienced in training neural networks for various use cases. The
group is allowed to use hardware resources of TU Dresden which speeds up neural
network training significantly. The downside is that the current training relies on specific
frameworks and the programming language Python, whereas the current Transkribus
source are implemented in Java. Thus, the trained networks cannot be used directly
in Transkribus but there has to be a wrapper. That wrapper has to load the trained
model and reimplement layer functionality. While neural network frameworks are all
very complex, that complexity lies in the training process. The plain passing of values
through the network on the other hand is quite simple.
Following commonly layers of a neural network have been implemented:

e Type of recurrent networks:
— GRU [3]
- MGU

e Activation functions:
— Sigmoid

Hard Sigmoid

— Tanh

Softmax
LeakyReLU [4]
Word embeddings [2]

4 Existing functionality

After having implemented basic neural network functionality, an interfacd?| for basic
language model tasks has been implemented:

public interface ILanguageModel
{

Zhttps://github.com/Transkribus/TranskribusLanguageResources/blob/master/src/main/
java/eu/transkribus/languageresources/languagemodels/ILanguageModel. java

D7.10 Language models 5/

https://github.com/Transkribus/TranskribusLanguageResources/blob/master/src/main/java/eu/transkribus/languageresources/languagemodels/ILanguageModel.java
https://github.com/Transkribus/TranskribusLanguageResources/blob/master/src/main/java/eu/transkribus/languageresources/languagemodels/ILanguageModel.java

public Map<String, Double> getProbabilitiesForNextToken(List<String>
sequence) throws UnsupportedSequenceException;

Listing 1: Interface definition for forecasting the next most probable toke

The interface offers a method which receives a list of tokens and returns a map. The
map contains a probability, represented by a double, for every token in the dictionary.
The double value represents the probability of a token appearing given a sequence. The
interface is implemented by an ARPA and by a neural language model.

5 Expand Abbreviations Experiments

As historical texts often abbreviate a lot of words, there exists interest in expanding
these abbreviated words to their original form. For some abbreviations, this is easy, but,
in many cases, the expansions of the abbreviation depends on the context of the word.
This is even more the case for languages like German or Dutch, where the last letters of
words often contain grammatical information. Without context, it is hardly possible to
give the correct expansion for an abbreviation.

5.1 Data preparation

Thus, the ASV group has started to train models that are given a text with abbreviated
words. Since they are not eplicitly annotated, the model first has to learn to recognize
abbreviated words. Then it has to learn which expansion corresponds to the abbrevi-
ation. The current experiments have been done with the dataset [tinerianova which
contains 27,000 XML documents and about 430,000 lines. The unparsed lines look like
this:

It (em) beat(ri)x shoeven van tyeldonc es comen in jegenw(or)dich(eit) d(er)
scepen(en) va(n) lov(en)

en(de) heeft gekent en(de) ghelijt dat sij hoirs danx en(de) hoirs wille(n)
ghegaen

Listing 2: Examplary lines from the Itinerianova data.

The brackets indicate abbreviations: The token [t(em) has been abbreviated to It, its
expanded form is Item. As one can easily see, every line contains lots of abbreviations.
For training, every line has been parsed into two formats: one with all brackets and its
contents removed, one with just the brackets removed. That results in one format with
everything abbreviated and one form with everything expanded. The abbreviated form
looks like this:

It beatx shoeven van tyeldonc es comen in jegenwdich d scepen va lov
en heeft gekent en ghelijt dat sij hoirs danx en hoirs wille ghegaen

Listing 3: Examplary training lines from the Itinerianova data.

D7.10 Language models 6/

The data then has been splitted into training and test data, whereas randomly whole
XML documents have been chosen as training data with the probability 0.9 and as test
data otherwise. This means that 90% of the documents are training data and 10% of
the documents are test data.

After seperating the data, a dictionary has been created. The dictionary has been filled
with words from the two kind of training files, which are the file with the abbreviated
lines and the file with the expanded lines. Thus, the dictionary contains types that have
been abbreviated and the expanded forms, but also all other words. If there are words
in the test data that are not found in the training data, that word cannot be recognized.
This should cover the fact that, if a trained model is used on unkown data, not all words
are in the dictionary of known words. Also, all the words are stored in lowercase to
reduce the number of variations.

Sometimes, whole words are being left out, but this is only the case for the word
et. 'This results in the not-abbreviated sequences being longer than the abbreviated
sequences or having more words respectively.

5.2 Experiments

In the current state of the project, to different neural network architectures have been
implemented and trained.

5.3 Simple network structure

First, a very simple neural network has been trained. It is given a random token from
the training lines together with the left and right neighbour. The network has to learn
three things:

e whether a word has been abbreviated
e the expansion of the word

e whether after the focused word the word et appears in the non-abbreviated se-
quence

Technically, the network has three outputs. The first output has a single value between
0 and 1 which represents the network’s confidence whether the word has been abbrevi-
ated. The second output contains as many values as there are words in the dictionary.
The activation for that output is softmax, thus all the values are between 0 and 1 as well
and if being summed up, the sum equals 1. This means that the output can be treated as
a probability, i.e. every value represents the probability of the corresponding type being
the expansion of the abbreviated form. The third output is a binary value representing
the network’s confidence that the word et has been left out in the abbreviated sequence.

5.4 Bidirectional recurrent network structure

Secondly, a more complex neural network architecture has been implemented. It does
not get static input like the previous network but gets whole sequences, in our case whole

D7.10 Language models 7/

lines as input. The network then iterates over the given sequence twice, forwards and
backwards. The results per timestamp are then concatenated into another sequence.
This gives the advantage that the concatenated sequence at every timestep contains
information about the whole sequence since it gets information from the forward and
from the backward network.

The output is the same as in the simple architecture, but now the network has to
output a sequence for every one of the three outputs. The values then represent the
same three things as the simple network’s output, but now for every timestep of the
input sequence.

5.5 Results

When testing the network, we use the previously created test data. A line is being put
into the network and it then outputs, as trained, for every token wether that token is an
abbreviation and if yes, what is that token’s expansion. When evaluating that process,
we are interested in two things:

e How could are abbreviations found?

e How good are they being expanded?

For the first question, precision /recall are good measurements. Here, precision indi-
cates if the network says a token is an abbreviation, how often the network is correct.
Recall indicates how many of the existing abbreviations have been found. When mea-
suring the correct expansion, we just measure the accuracy, i.e. a percentage value of
how often the correct expansion has been chosen.

Number of lines 43864

Number of words 464980

Number of abbreviations 152815
Average number of words per line 10.6
Average number of abbreviations per line | 3.04

Table 1: Basic test data statistics

The results in table 2 show that the more complex bidirectional recurrent architecture
is way better with expanding abbreviations that the simple structure, though both are
not perfect as indicated by the precision and recall values. It can be assumed that the
recurrent architecture makes good use of the bigger input information and then is better
at choosing the grammatically correct expansion form.

Input line: elx jaers daen bynne ome en voe xii molevate rox
Expected line: elx jaers daeren bynnen omme ende voer xil molevaten rox
Created line: elx jaers daeren bynnen omme ende voer xii molevate rox

Listing 4: Examplary test results from Itineria expansion experiments

D7.10 Language models 8/

simple bidirectional
architecture recurrent
architecture
Number of correctly found | 65198 90361
abbreviations (true positive)
Number of wrongly assumed | 87620 70109
abbreviations (false positive)
Number of not found | 87619 62456
abbreviations (false negative)
Precision 39.62% 42.67%
Recall 56.31% 59.13%
Percantage of correctly expanded | 56.63% 85.85%
abbreviations

Table 2: Experiment results

When looking at the data, it is interesing to see the cases where both networks have
problems. Listing 4 shows three lines. The first line is the abbreviated input line,
that is given into the network. The second line shows the correct line (ground truth).
The third line is the line created by the network. One can see, that that line contains
five abbreviations: daen, bynne, ome, en, voe and molevate. The first four have been
recognized as abbreviations and were expanded correctly. molevate was not recognized
as an abbreviation was thus was not expanded. This example was chosen to show that
the abbreviated and expanded words are often very similar. Also, many words, like
molevate, also exist in their abbreviated form, which makes it even harder to learn the
correct form.

5.6 Outlook

The results show that bringing more context information into the network, the network
is able expand more accurately. We believe that combining the recurrent architecture
with convolutional networks’] will enhance the use of context information. Also, since
many words differ only slightly in their spelling, we believe it would make sense to also
give character information into the network.

An open question is how to handle the word et. In the given data set, it is the only
word being left out completly. Thus, the input sequences with the abbreviated words
and the target sequences with the expanded words sometimes differ in their length.
Currently, this problem is solved by using a dedicated output which determines whether
the target sequence contains the words et that was not there in the input sequence. For
the given data set, this is a plausible solution. But this approach makes the network
unusable for other data sets.

Thus, in the next phase of the project, we want to create a more complex network

3E.g.: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

D7.10 Language models 9/

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

structure that makes use of convolutional layers and character information and does not
contain a special solution for the word et.

D7.10 Language models 10/

|1] Bengio, Y.: A Neural Probabilistic Language Model, 2003

[2] Gal, Y.: A Theoretically Grounded Application of Dropout in Recurrent Neural
Networks, 2016

|3] Jozefowicz, R.: An Empirical Exploration of Recurrent Network Architectures,
2014

|[4] Xu, B.: Empirical Evaluation of Recti ed Activations in Convolution Network,
2015

D7.10 Language models 11/

	Executive Summary
	Context
	Implementation
	Existing functionality
	Expand Abbreviations Experiments
	Data preparation
	Experiments
	Simple network structure
	Bidirectional recurrent network structure
	Results
	Outlook

