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1 Executive Summary
The basic layout analysis module extracts visual features from document images. These
features include page segmentation (paragraphs), text-line segmentation, and the recog-
nition of supplemental elements (e.g. images, ...). The current deliverable D6.4 is trained
for images, handwritten/printed text and noise as supplemental elements. However, the
implemented classification can be trained for any entity based on the requirements of e.g.
certain collections (e.g. initials). A detailed evaluation of the basic layout analysis on
competition datasets will be presented in D6.5. The module is part of the CVL READ
framework. It is Open Source under LGPLv3 and available at github1. In addition to
the command line testing routines, a plugin2 for nomacs3 is provided which allows for
training and testing on either single images or a batch of images.

2 Super-Pixel
Document elements such as characters, words, or decorations need to be segmented in
order to group and/or recognize them. Binarization algorithms such as Otsu or Su [1] are
typically utilized for segmentation. This approach has a major drawback: one cannot
segment black characters on white and white characters on black at the same time.
This is why MSER [2] is used in order to extract connected components which we call
super-pixel. Even though MSER overcomes the previously mentioned issue, it segments
words rather than characters if cursive handwriting is present. That is why we build
a scale-space with increasing circular erosions. Figure 1 shows the improvement of the
proposed MSER extraction. For memory efficiency, each MSER region is approximated
by an ellipse which is estimated by means of a PCA.

Figure 1: Detail of M Aigen am Inn 007 0336 (left), MSER output (middle), improved
MSER output using erosions (right).

1https://github.com/TUWien/ReadFramework
2https://github.com/TUWien/ReadModules
3https://nomacs.org
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3 Local Orientation
Text-lines may have changing local orientations because of perspective distortions, warped
pages or simply because they are written at different angles. We use a local orientation
estimation which is strongly related to that proposed by Il Koo [3]. A N × N neighbor-
hood is extracted for each super-pixel. Then, projection profiles using the super-pixels’
center-of-mass are extracted at different angles. The projection profiles are further trans-
formed using the Discrete Fourier Transform (DFT). The DFT has large peaks if recur-
ring frequencies are present. In general, text-lines have a (more or less) fixed line spacing
which results in such a peak. Hence, the histogram with the largest peak indicates a
super-pixels’ local orientation. Since local orientations are similar with respect to the
location, the orientations are smoothed using a multi-label graph-cut.

Figure 2 shows the local orientation estimation of a super-pixel. The orange his-
tograms show the pixel’s projection profiles sampled at eight different orientations. For
illustration reasons only eight orientations are sampled, usually 32 projection profiles
are created which results in an angular resolution of 5.6 ◦. The right image shows the
DFT of the projection profiles. It can be seen, that the histogram at 90 ◦ has repeating
peaks which result in a large peak after applying DFT. By this peak, we can determine
the local orientation and the line spacing.

Figure 2: Projection profiles of a Superpixel (left), DFT (right).

4 Component Labeling
Having extracted super-pixels with Maximally Stable Extremal Regions (MSER), the
location and scale of Connected Components (CCs) are known. However, it is not known
what elements are being found. Therefore, super-pixels are classified. We use local fea-
tures - namely Oriented FAST and Rotated BRIEF (ORB) - in order to represent the
local structure. ORB can be replaced by any other descriptor such as SIFT or DAISY.
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ORB are chosen since they are computationally efficient and comparably compact (32
bytes). For classification, a Random Forest [4] is utilized. Again, any other machine
learning (e.g. Support Vector Machines (SVM), Neural Nets) can be used. Random
Forests are convenient for their fast training, multi-label classification, and weight as-
signment. A flexible feature collection is implemented which allows for collecting target
specific labels from multiple training datasets. First tests were carried out using four
different classes (Handwriting, Printed, Image, Noise). However, the system is capa-
ble to classify any other (visual) elements if they are visually dissimilar and properly
trained.4

Similarly to the local orientation estimation, a multi-label graph-cut will be used to
improve the labeling results with respect to local neighborhoods.

Figure 3 shows the component labeling. The lines represent the super-pixel’s local
orientation. Note that the local orientation substantially changes in the image area if no
graph-cut is applied. These noisy estimations are harmonized after applying the graph-
cut (right). The right image shows first test results if four different classes are trained.
Super-pixels that are falsely labeled as handwritten, result from a strong handwriting
prior within the training data.

Figure 3: Detail of a sample image published with the Page Segmentation Contest 2009
(left), local orientations without the multi-label graph-cut (middle), compo-
nent labeling with four potential classes (right). The classes are: Handwriting
(blue), Printed (yellow), Image (green), noise (gray).

5 Text-Line Segmentation
A preliminary text-line estimation is implemented which works on machine printed doc-
uments only. The super-pixels are therefore connected using Delauney triangulation.
Since, we know the local orientation, the distances are weighted with each super-pixel’s
orientation. Hence, rather than using the Euclidean distance, the scalar product be-
tween the orientation vector and the edge vector is used. In the ideal case where two
super-pixel centers are perfectly aligned and the orientation estimation is correct, the

4Here is a manual for training new classes: https://github.com/TUWien/ReadModules/blob/
master/manuals/Training%20Super%20Pixels.md
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distance becomes 0. While edges which are perpendicular to the local orientation have
the Euclidean distance (the orientation vector is normalized). This methodology works
correctly if text-lines need to be found within printed text. However, handwritten text
is too complex to be tackled with a simple text-line detection like this (see Figure 5).

In order to improve the text-line segmentation, a tab-stop analysis is performed similar
to that proposed by Ray Smith [5]. Figure 4 shows the results of the text-line segmen-
tation on a printed document sample having skewed and multiple orientated text-lines.
Colored polygons represent the text-lines’ convex hulls while gray lines indicated the
connected components.

Figure 4: Text-line segmentation of a book having curved pages.

6 Evaluation
The basis for the method presented is a closed source in-house solution [6] which was
evaluated on the past Handwriting Segmentation Contests. Table 1 gives an overview
of its performance (CVL). In addition, its F-Score (FM) is compared with all partici-
pating methods on the last three Handwriting Segmentation Contests in Figure 6. The
page segmentation (classification of elements) is evaluated on the ICDAR 2009 Page
Segmentation Contest (see Figure 7).

7 Future Work
We are developing a new basic layout analysis module rather than using the existing
in-house solution discussed in [6]. This is partly because of copyright and design issues.
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Figure 5: Baseline visualization on a handwritten document from the baseline competi-
tion (T Freyung 003 0204 ).

M o2o DR RA FM
CUBS 4,036 4,016 99.55 99.50 99.53

ILSP-LWSeg-09 4,043 4,000 99.16 98.94 99.05
CVL 4,034 3,977 98.59 98.59 98.59
PAIS 4,031 3,973 98.49 98.56 98.52

CMM 4,044 3,975 98.54 98.29 98.42
CASIA-MSTSeg 4,049 3,867 95.86 95.51 95.68

PortoUniv 4,028 3,811 94.47 94.61 94.54

M o2o DR RA FM
CUBS 1,626 1,589 97.54 97.72 97.63

NifiSoft 1,634 1,589 97.54 97.25 97.40
CVL 1,633 1,583 97.18 96.94 97.06

IRISA 1,636 1,578 96.87 96.45 96.66
ILSP-a 1,656 1,567 96.19 94.63 95.40
ILSP-b 1,655 1,559 95.70 94.20 94.95

TEI 1,637 1,549 95.09 94.62 94.86

Table 1: Results of the Icdar 2009 (left) [7] and Icfhr 2010 (right) [8] Handwriting
Segmentation Contest.
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Figure 6: Results of the Icdar 2009 [7], Icfhr 2010 [8], and Icdar 2013 [9] Handwriting
Segmentation Contest.
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Figure 7: Comparison of CVL (Vienna UT) page segmentation with all participating
methods of the ICDAR 2009 Page Segmentation Competition.

The existing solution is designed for modern documents while the proposed method
targets additionally old archival documents. The key differences are:

Old New
CC Segmentation Binarization MSER

Skew global local (per CC)
Labeling 3 classes flexible

That is why handwritten text-line segmentation and page segmentation (zoning) are
not fully functional yet. It is planned to group the CCs using their class labels, locations,
and lines (graphical lines or virtual tabstop lines). By these means a zoning will be
established which allows other algorithms to perform their tasks on specifically labeled
zones of a document image. Moreover, the text-line clustering has to be improved for
handwritten archival documents.
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